Abstract

In this paper, we propose a tilted elemental image array generation method for computer generated integral imaging display with reduced moiré patterns. The pixels of the tilted elemental image array are divided into border pixels and effective pixels. According to the optimal tilted angle, the effective pixels are arranged with uniform arrangement. Also, a pixel mapping method is proposed. Appropriate experiments are carried out and the experimental results show that not only the color moiré patterns are reduced remarkably, but also the resolution of the reconstructed 3D images are improved through the proposed method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, S. Y. Jung, S. W. Min, and J. H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett.26(19), 1481–1482 (2001).
    [CrossRef] [PubMed]
  2. A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
    [CrossRef]
  3. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  4. H. Yoo, “Artifact analysis and image enhancement in three-dimensional computational integral imaging using smooth windowing technique,” Opt. Lett.36(11), 2107–2109 (2011).
    [CrossRef] [PubMed]
  5. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
    [CrossRef]
  6. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt.52(4), 546–560 (2013).
    [CrossRef] [PubMed]
  7. C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt.14(9), 095401 (2012).
    [CrossRef]
  8. K. C. Kwon, C. Park, M. U. Erdenebat, J. S. Jeong, J. H. Choi, N. Kim, J. H. Park, Y. T. Lim, and K. H. Yoo, “High speed image space parallel processing for computer-generated integral imaging system,” Opt. Express20(2), 732–740 (2012).
    [CrossRef] [PubMed]
  9. S. H. Jiao, X. G. Wang, M. C. Zhou, W. M. Li, T. Hong, D. Nam, J. H. Lee, E. H. Wu, H. T. Wang, and J. Y. Kim, “Multiple ray cluster rendering for interactive integral imaging system,” Opt. Express21(8), 10070–10086 (2013).
    [CrossRef] [PubMed]
  10. G. Baasantseren, J. H. Park, K. C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express17(16), 14405–14417 (2009).
    [CrossRef] [PubMed]
  11. J. H. Jung, S. G. Park, Y. Kim, and B. Lee, “Integral imaging using a color filter pinhole array on a display panel,” Opt. Express20(17), 18744–18756 (2012).
    [CrossRef] [PubMed]
  12. I. Amidror, R. D. Hersch, and V. Ostromoukhov, “Spectral analysis and minimization of moiré patterns in color separation,” J. Electron. Imaging3(3), 295–317 (1994).
    [CrossRef]
  13. R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays20(2), 57–64 (1999).
    [CrossRef]
  14. V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
    [CrossRef]
  15. V. Saveljev and S. K. Kim, “Simulation of moiré effect in 3D displays,” J. Opt. Soc. Korea14(4), 310–315 (2010).
    [CrossRef]
  16. M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moire fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt.44(21), 4475–4483 (2005).
    [CrossRef] [PubMed]
  17. Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
    [CrossRef]
  18. K. Yanaka and K. Uehira, “Extended fractional view integral imaging using slanted fly's eye lens,” in Proceedings of SID Symposium Digest of Technical Papers, Wiley (Academic, 2011), pp. 1124–1127.
    [CrossRef]
  19. Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt.48(11), 2178–2187 (2009).
    [CrossRef] [PubMed]
  20. Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
    [CrossRef]
  21. M. Halle, “Multiple viewpoint rendering,” SIGGRAPH ’98, Proceedings of the 25th Annual conference on Computer Graphics and Interactive Techniques, 243–254 (1998).
  22. R. Yang, X. Huang, and S. Chen, “Efficient rendering of integral images,” SIGGRAPH’05, Proceedings of 32nd Annual conference on Computer Graphics and Interactive Techniques,44 (2005).
  23. S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
    [CrossRef]
  24. S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
    [CrossRef]
  25. B. N. R. Lee, Y. Cho, K. S. Park, S. W. Min, J. S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” International Conference on Electronic Commerce 2006, 135–140 (2006).
    [CrossRef]
  26. K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems E90-D, 233–241 (2007).
  27. S. C. Kang, Z. Z. Stroll, and S. C. Miller, “Small angle image rotation using block transfers,” U.S. patent 4829452 (May 9, 1989).
  28. D. H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express15(19), 12039–12049 (2007).
    [CrossRef] [PubMed]
  29. H. Yoo, “Axially moving a lenslet array for high-resolution 3D images in computational integral imaging,” Opt. Express21(7), 8873–8878 (2013).
    [CrossRef] [PubMed]
  30. W. Li, H. Wang, M. Zhou, S. Wang, S. Jiao, X. Mei, T. Hong, H. Lee, and J. Kim, “Principal observation ray calibration for tiled-lens-array integral imaging display,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Oregon Convention Center, Portland, Oregon, 2013), pp. 1019–1026.
  31. H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
    [CrossRef]
  32. Y. Xu, X. R. Wang, Y. Sun, and J. Q. Zhang, “Homogeneous light field model for interactive control of viewing parameters of integral imaging displays,” Opt. Express20(13), 14137–14151 (2012).
    [CrossRef] [PubMed]

2013 (3)

2012 (4)

2011 (3)

H. Yoo, “Artifact analysis and image enhancement in three-dimensional computational integral imaging using smooth windowing technique,” Opt. Lett.36(11), 2107–2109 (2011).
[CrossRef] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (1)

Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
[CrossRef]

2007 (2)

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems E90-D, 233–241 (2007).

D. H. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express15(19), 12039–12049 (2007).
[CrossRef] [PubMed]

2006 (2)

S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

2005 (3)

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

M. Okui, M. Kobayashi, J. Arai, and F. Okano, “Moire fringe reduction by optical filters in integral three-dimensional imaging on a color flat-panel display,” Appl. Opt.44(21), 4475–4483 (2005).
[CrossRef] [PubMed]

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

2001 (1)

1999 (1)

R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays20(2), 57–64 (1999).
[CrossRef]

1994 (1)

I. Amidror, R. D. Hersch, and V. Ostromoukhov, “Spectral analysis and minimization of moiré patterns in color separation,” J. Electron. Imaging3(3), 295–317 (1994).
[CrossRef]

1978 (1)

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Amidror, I.

I. Amidror, R. D. Hersch, and V. Ostromoukhov, “Spectral analysis and minimization of moiré patterns in color separation,” J. Electron. Imaging3(3), 295–317 (1994).
[CrossRef]

Arai, J.

Baasantseren, G.

Börner, R.

R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays20(2), 57–64 (1999).
[CrossRef]

Chen, Y.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Cho, S. W.

Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
[CrossRef]

Cho, Y.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems E90-D, 233–241 (2007).

S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Choi, J. H.

Choi, Y.

Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
[CrossRef]

Deng, H.

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt.14(9), 095401 (2012).
[CrossRef]

H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
[CrossRef]

Erdenebat, M. U.

Hahn, M.

S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Hersch, R. D.

I. Amidror, R. D. Hersch, and V. Ostromoukhov, “Spectral analysis and minimization of moiré patterns in color separation,” J. Electron. Imaging3(3), 295–317 (1994).
[CrossRef]

Hong, K.

Hong, T.

Igarashi, Y.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Ishinabe, T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Javidi, B.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt.52(4), 546–560 (2013).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

Jeong, J. S.

Ji, C. C.

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt.14(9), 095401 (2012).
[CrossRef]

Jiao, S. H.

Jung, J. H.

Jung, S. Y.

Kim, D. S.

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

Kim, J.

Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt.48(11), 2178–2187 (2009).
[CrossRef] [PubMed]

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

Kim, J. Y.

Kim, N.

Kim, S. K.

V. Saveljev and S. K. Kim, “Simulation of moiré effect in 3D displays,” J. Opt. Soc. Korea14(4), 310–315 (2010).
[CrossRef]

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

Kim, Y.

Kobayashi, M.

Kwon, K. C.

Lee, B.

Lee, J. H.

Lee, M. G.

Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
[CrossRef]

Li, D. H.

H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
[CrossRef]

Li, W. M.

Lim, Y. T.

Liu, Y.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Martinez-Corral, M.

Min, S. W.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems E90-D, 233–241 (2007).

S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

B. Lee, S. Y. Jung, S. W. Min, and J. H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett.26(19), 1481–1482 (2001).
[CrossRef] [PubMed]

Murata, H.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Nam, D.

Okano, F.

Okui, M.

Ostromoukhov, V.

I. Amidror, R. D. Hersch, and V. Ostromoukhov, “Spectral analysis and minimization of moiré patterns in color separation,” J. Electron. Imaging3(3), 295–317 (1994).
[CrossRef]

Park, C.

Park, G.

Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt.48(11), 2178–2187 (2009).
[CrossRef] [PubMed]

Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
[CrossRef]

Park, J. H.

Park, K. S.

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems E90-D, 233–241 (2007).

S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Park, S. G.

Rao, L.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Ren, H.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Saveljev, V.

V. Saveljev and S. K. Kim, “Simulation of moiré effect in 3D displays,” J. Opt. Soc. Korea14(4), 310–315 (2010).
[CrossRef]

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

Shin, D. H.

Son, J. Y.

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

Stern, A.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt.52(4), 546–560 (2013).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

Sun, Y.

Ueda, M.

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Wang, F. N.

H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
[CrossRef]

Wang, H. T.

Wang, Q. H.

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt.14(9), 095401 (2012).
[CrossRef]

H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
[CrossRef]

Wang, X. G.

Wang, X. R.

Wu, E. H.

Wu, S. T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Xiao, X.

Xu, S.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

Xu, Y.

Yoo, H.

Yoo, K. H.

Zhang, J. Q.

Zhou, M. C.

Appl. Opt. (4)

Displays (1)

R. Börner, “Four autostereoscopic monitors on the level of industrial prototypes,” Displays20(2), 57–64 (1999).
[CrossRef]

IEICE – Transactions on Information and Systems E (1)

K. S. Park, S. W. Min, and Y. Cho, “Viewpoint vector rendering for efficient elemental image generation,” IEICE – Transactions on Information and Systems E90-D, 233–241 (2007).

J. Disp. Technol. (3)

H. Deng, Q. H. Wang, D. H. Li, and F. N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol.7(5), 255–258 (2011).
[CrossRef]

V. Saveljev, J. Y. Son, B. Javidi, S. K. Kim, and D. S. Kim, “Moiré minimization condition in three-dimensional image displays,” J. Disp. Technol.1(2), 347–353 (2005).
[CrossRef]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S. T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol.7(12), 674–678 (2011).
[CrossRef]

J. Electron. Imaging (1)

I. Amidror, R. D. Hersch, and V. Ostromoukhov, “Spectral analysis and minimization of moiré patterns in color separation,” J. Electron. Imaging3(3), 295–317 (1994).
[CrossRef]

J. Opt. (1)

C. C. Ji, H. Deng, and Q. H. Wang, “Pixel extraction based integral imaging with controllable viewing direction,” J. Opt.14(9), 095401 (2012).
[CrossRef]

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (3)

Y. Igarashi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

S. W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Proc. IEEE (1)

A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

Proc. SPIE (1)

Y. Kim, G. Park, S. W. Cho, J. H. Jung, B. Lee, Y. Choi, and M. G. Lee, “Integral imaging with reduced color moiré pattern by using a slanted lens array,” Proc. SPIE6803, 68030L (2008).
[CrossRef]

Other (6)

K. Yanaka and K. Uehira, “Extended fractional view integral imaging using slanted fly's eye lens,” in Proceedings of SID Symposium Digest of Technical Papers, Wiley (Academic, 2011), pp. 1124–1127.
[CrossRef]

B. N. R. Lee, Y. Cho, K. S. Park, S. W. Min, J. S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” International Conference on Electronic Commerce 2006, 135–140 (2006).
[CrossRef]

W. Li, H. Wang, M. Zhou, S. Wang, S. Jiao, X. Mei, T. Hong, H. Lee, and J. Kim, “Principal observation ray calibration for tiled-lens-array integral imaging display,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Oregon Convention Center, Portland, Oregon, 2013), pp. 1019–1026.

S. C. Kang, Z. Z. Stroll, and S. C. Miller, “Small angle image rotation using block transfers,” U.S. patent 4829452 (May 9, 1989).

M. Halle, “Multiple viewpoint rendering,” SIGGRAPH ’98, Proceedings of the 25th Annual conference on Computer Graphics and Interactive Techniques, 243–254 (1998).

R. Yang, X. Huang, and S. Chen, “Efficient rendering of integral images,” SIGGRAPH’05, Proceedings of 32nd Annual conference on Computer Graphics and Interactive Techniques,44 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Concept of the display process. (a) conventional EI display and (b) tilted EI display.

Fig. 2
Fig. 2

Effective pixel arrangements of four adjacent EIs. (a) tilted angle φ and (b) tilted angle θ.

Fig. 3
Fig. 3

Parameters of the tilted micro-lens on a LCD.

Fig. 4
Fig. 4

Conceptual diagram of the proposed pixel mapping method.

Fig. 5
Fig. 5

(a) Scheme of the virtual pick-up stage and (b) 3D model used in this experiment.

Fig. 6
Fig. 6

Experimental set-up for 3D image reconstruction.

Fig. 7
Fig. 7

Computer-generated EIAs (top) and reconstructed 3D images (bottom). (a) conventional CGII, (b) general image rotation, and (c) proposed method.

Fig. 8
Fig. 8

Different views of the reconstructed 3D images.

Tables (2)

Tables Icon

Table 1 Parameters of the Integral Imaging Display

Tables Icon

Table 2 Comparison of EIs Generated by Different Methods

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r nm =p n 2 + m 2  for{ n=1,2,,floor(d/p) m=1,2,,floor(d/p) .
f nm ={ | d r nm d |, θ 1 <arctan( m n )< θ 2 -1,elsewhere.
A( n , m )=Findmin ( f nm ) s×u =Findmin( f 11 f 12 f 1u f 21 f 22 f 2u f s1 f s2 f su )
θ=arctan( m n ),
( x y )=( cosθ sinθ sinθ cosθ )( x y ).
{ x 1 =( i3/2 )cosθ+( j1/2 )sinθ y 1 =( i3/2 )sinθ+( j1/2 )cosθ ,
{ x 2 =( i1/2 )cosθ+( j1/2 )sinθ y 2 =( i1/2 )sinθ+( j1/2 )cosθ ,
{ x 3 =( i1/2 )cosθ+( j3/2 )sinθ y 3 =( i1/2 )sinθ+( j3/2 )cosθ ,
{ x 4 =( i3/2 )cosθ+( j3/2 )sinθ y 4 =( i3/2 )sinθ+( j3/2 )cosθ .
{ (h1)sinθ+(v1)cosθ<j 1 2 (h1)sinθ+(v1)cosθ>j 3 2 (h1)cosθ(v1)sinθ<i 1 2 (h1)cosθ(v1)sinθ>i 3 2 .

Metrics