Abstract

We describe the use of various silicon photonic device technologies to implement microwave photonic filters (MPFs). We demonstrate four-wave mixing in a silicon nanowire waveguide (SNW) to increase the number of taps for MPFs based on finite impulse response filter designs. Using a 12 mm long SNW reduces the footprint by five orders of magnitude compared to silica highly nonlinear fiber while only requiring approximately two times more input power. We also demonstrate optical delays based on serial sidewall Bragg grating arrays and step-chirped sidewall Bragg gratings in silicon waveguides. We obtain up to 63 ps delay in discrete steps from 15 ps to 32 ps over a wide bandwidth range from 33 nm to at least 62 nm. These components can be integrated with other silicon-based components such as integrated spectral shapers and modulators to realize a fully integrated MPF.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013).
    [CrossRef]
  4. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  5. J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
    [CrossRef]
  6. J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
    [CrossRef]
  7. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
    [CrossRef]
  8. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
    [CrossRef]
  9. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Lasers & Photon. Rev. doi: . (2013).
    [CrossRef]
  10. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
    [CrossRef]
  11. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol.29(11), 1611–1619 (2011).
    [CrossRef]
  12. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20(17), 18836–18845 (2012).
    [CrossRef] [PubMed]
  13. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
    [CrossRef]
  14. B. Vidal, J. Palací, and J. Capmany, “Reconfigurable photonic microwave filter based on four-wave mixing,” IEEE Photon. J.4(3), 759–764 (2012).
    [CrossRef]
  15. J. Li, R. Adams, Z. Saraç, D. Berardo, and L. R. Chen, “A reconfigurable microwave photonic filter based on four wave mixing in a silicon nanophotonic waveguide,” presented at Photonics North, Ottawa, ON, Canada, 3–5 June 2013.
  16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  17. M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
    [CrossRef]
  18. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008).
    [CrossRef] [PubMed]
  19. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
    [CrossRef]
  20. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33(24), 3013–3015 (2008).
    [CrossRef] [PubMed]
  21. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009).
    [CrossRef]
  22. I. Giuntoni, D. Stolarek, D. I. Kroushkov, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Continuously tunable delay line based on SOI tapered Bragg gratings,” Opt. Express20(10), 11241–11246 (2012).
    [CrossRef] [PubMed]
  23. E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
    [CrossRef]
  24. S. Khan and S. Fathpour, “Complementary apodized grating waveguides for tunable optical delay lines,” Opt. Express20(18), 19859–19867 (2012).
    [CrossRef] [PubMed]
  25. M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings serial grating arrays,” presented at Photonics North, Ottawa, ON, Canada, 3–5 June 2013.
  26. M. Lipson, “Silicon photonics: the optical spice rack,” Electron. Lett.45(12), 576–577 (2009).
    [CrossRef]
  27. Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
    [CrossRef]
  28. L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

2013 (1)

2012 (4)

2011 (1)

2010 (6)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

2009 (3)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009).
[CrossRef]

M. Lipson, “Silicon photonics: the optical spice rack,” Electron. Lett.45(12), 576–577 (2009).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

2008 (2)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

2006 (4)

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
[CrossRef]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

2005 (1)

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Azaña, J.

E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
[CrossRef]

Bovington, J.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Bowers, J. E.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Bruns, J.

Byrnes, A.

Canciamilla, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013).
[CrossRef]

B. Vidal, J. Palací, and J. Capmany, “Reconfigurable photonic microwave filter based on four-wave mixing,” IEEE Photon. J.4(3), 759–764 (2012).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Chaker, M.

E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
[CrossRef]

Chang, Y. M.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

Chen, H.-W.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Choi, D.-Y.

Chung, H.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

Coldren, L. A.

De La Rue, R. M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

Eggleton, B. J.

Fainman, Y.

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009).
[CrossRef]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33(24), 3013–3015 (2008).
[CrossRef] [PubMed]

Fan, S.

Fang, A. W.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Fathpour, S.

Ferrari, C.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008).
[CrossRef] [PubMed]

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Gaeta, A. L.

Gasulla, I.

Giuntoni, I.

Guzzon, R. S.

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Han, Y.-G.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

Ikeda, K.

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009).
[CrossRef]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33(24), 3013–3015 (2008).
[CrossRef] [PubMed]

Johansson, L. A.

Khan, M. H.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Khan, S.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Krauss, T. F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

Kroushkov, D. I.

Le Drogoff, B.

E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
[CrossRef]

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Lee, J. H.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

Lee, S. B.

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

Li, C.

L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

Li, E.

Liang, D.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Lipson, M.

Lloret, J.

Lo, S. M. G.

L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

Luther-Davies, B.

Madden, S.

Manolatou, C.

Martinelli, M.

Melloni, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008).
[CrossRef] [PubMed]

Minasian, R. A.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013).
[CrossRef]

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Morichetti, F.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008).
[CrossRef] [PubMed]

Mortazy, E.

E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
[CrossRef]

Norberg, E. J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

O’Faolain, L.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Palací, J.

B. Vidal, J. Palací, and J. Capmany, “Reconfigurable photonic microwave filter based on four-wave mixing,” IEEE Photon. J.4(3), 759–764 (2012).
[CrossRef]

Pant, R.

Parker, J. S.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Petermann, K.

Peters, J. D.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Poulton, C. G.

Qi, M.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Rideout, H.

Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
[CrossRef]

Sales, S.

Samarelli, A.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

Sancho, J.

Saperstein, R. E.

Schmidt, B. S.

Sehn, H.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Sharping, J. E.

Slutsky, B.

Sorel, M.

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

Stolarek, D.

Tan, D. T. H.

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009).
[CrossRef]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett.33(24), 3013–3015 (2008).
[CrossRef] [PubMed]

Tehranchi, A.

E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
[CrossRef]

Tillack, B.

Tsang, H. K.

L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

Turner, A. C.

Vidal, B.

B. Vidal, J. Palací, and J. Capmany, “Reconfigurable photonic microwave filter based on four-wave mixing,” IEEE Photon. J.4(3), 759–764 (2012).
[CrossRef]

Wang, Q.

Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
[CrossRef]

Wang, Z.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Xiao, S.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Xu, L.

L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

Xuan, Y.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Yao, J. P.

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
[CrossRef]

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

Zeng, F.

Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
[CrossRef]

Zhao, L.

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Zimmermann, L.

Appl. Phys. Lett. (1)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on chip group velocity dispersion engineering,” Appl. Phys. Lett.95(14), 141109 (2009).
[CrossRef]

Electron. Lett. (2)

J. H. Lee, Y. M. Chang, Y.-G. Han, H. Chung, and S. B. Lee, “Flexibility tunable microwave photonics FIR filter incorporating wavelength spacing programmable, arrayed micro-mirror based optical filter,” Electron. Lett.42(14), 812–814 (2006).
[CrossRef]

M. Lipson, “Silicon photonics: the optical spice rack,” Electron. Lett.45(12), 576–577 (2009).
[CrossRef]

IEEE Photon. J. (2)

A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. M. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in Silicon photonics: coupler resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010).
[CrossRef]

B. Vidal, J. Palací, and J. Capmany, “Reconfigurable photonic microwave filter based on four-wave mixing,” IEEE Photon. J.4(3), 759–764 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Capmany, J. Mora, B. Ortega, and D. Pastor, “High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients,” IEEE Photon. Technol. Lett.17(12), 2730–2732 (2005).
[CrossRef]

Q. Wang, H. Rideout, F. Zeng, and J. P. Yao, “Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett.18(23), 2460–2462 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech.58(11), 3088–3093 (2010).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (3)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics4(8), 535–544 (2010).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

M. H. Khan, H. Sehn, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics4(2), 117–122 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (5)

M. Spasojevic and L. R. Chen, “Tunable optical delay line in SOI implemented with step chirped Bragg gratings serial grating arrays,” presented at Photonics North, Ottawa, ON, Canada, 3–5 June 2013.

L. Xu, C. Li, S. M. G. Lo, and H. K. Tsang, “Millimeter wave generation using four wave mixing in silicon waveguidem” in Proc. Opto-Electon. and Comm. Conference, Sapporo, Japan, July 2010, pp. 860–861.

E. Mortazy, B. Le Drogoff, J. Azaña, M. Chaker, and A. Tehranchi, “Chirped Bragg grating in silicon based rib waveguide,” in Proc. 7th Workshop on Fiber and Optical Passive Components, Montreal, Canada, July 2011, pp. 1–4.
[CrossRef]

J. Li, R. Adams, Z. Saraç, D. Berardo, and L. R. Chen, “A reconfigurable microwave photonic filter based on four wave mixing in a silicon nanophotonic waveguide,” presented at Photonics North, Ottawa, ON, Canada, 3–5 June 2013.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Lasers & Photon. Rev. doi: . (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for 4-tap photonic microwave filter. (b) Optical spectra after FWM in the SNW (left), after the WS set to provide a uniform tap profile (center), and after the WS set to provide an apodized tap profile (right).

Fig. 2
Fig. 2

Microwave photonic filter response for the following tap profiles: (a) [1,1,1,1]; (b) [1, 0, 1, 0]; (c) [1, 1, 1, 0]; and (d) [0.25, 1, 1, 0.25]. Experimental results using SNW (black) and HNLF (blue); simulations (red).

Fig. 3
Fig. 3

Schematic diagram of silicon waveguide grating-based delays. (a) Serial grating arrays, (b) step-chirped gratings, (c) and (d) cross-sectional views.

Fig. 4
Fig. 4

Schematic diagram and layout of devices.

Fig. 5
Fig. 5

Serial sidewall Bragg grating arrays fabricated with (a) 4 nm and (b) 6 nm grid resolution. The arrows indicate the wavelengths that are used to measure the delay response (sample mode, persistence time of 300 ms, 20 ps/div). For the spectral measurements, the reflection curves are in blue and the transmission curves are in green.

Fig. 6
Fig. 6

Step-chirped sidewall Bragg gratings fabricated with (a) 2 nm, (b), 4 nm, and (c) 6 nm grid resolutions. The arrows indicate the wavelengths that are used to measure the delay response (sample mode, persistence time of 300 ms, 20 ps/div). For the spectral measurements, the reflection curves are in blue and the transmission curves are in green.

Tables (2)

Tables Icon

Table 1 Parameters of step-chirped sidewall Bragg gratings

Tables Icon

Table 2 Summary of delay characteristics for serial grating arrays and step-chirped gratings

Metrics