Abstract

Optical waveguides comprised of nanoporous materials are uniquely suited for on-chip sensing applications, because they allow for a target chemical or analyte to directly infiltrate the optical material that comprises the core of the waveguide. We describe here the fabrication and characterization of nanoporous waveguides, and demonstrate their usefulness in measuring small changes in refractive index when exposed to a test analyte. We use a process of electrochemical etching and laser oxidation to produce channel waveguides and integrated on-chip Mach-Zehnder structures, and we compare the responsivity and interferometric stability of the integrated sensor to that of a fiber-based interferometer. We quantify the detection capability by selectively applying isopropanol to a 200 μm length waveguide segment in one arm of the interferometer, which produces a phase shift of 9.7π. The integrated interferometer is shown to provide a more stable response in comparison to a comparable fiber-based implementation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection ofbiomolecules in aqueous solutions,” Opt. Lett.29, 1974–1976 (2004).
    [CrossRef] [PubMed]
  2. C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
    [CrossRef]
  3. M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
    [CrossRef] [PubMed]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30, 1273–1275 (2005).
    [CrossRef] [PubMed]
  5. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett.29, 1894–1896 (2004).
    [CrossRef] [PubMed]
  6. V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
    [CrossRef] [PubMed]
  7. J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
    [CrossRef]
  8. L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
    [CrossRef]
  9. P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
    [CrossRef]
  10. M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
    [CrossRef]
  11. S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
    [CrossRef]
  12. L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
    [CrossRef]
  13. L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
    [CrossRef]
  14. L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005).
    [CrossRef] [PubMed]
  15. H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
    [CrossRef] [PubMed]
  16. R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
    [CrossRef]
  17. J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, and J. Martínez-Pastor, “Birefringent porous silicon membranes for optical sensing,” Opt. Express19, 26106–26116 (2011).
    [CrossRef]
  18. E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
    [CrossRef]
  19. I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
    [CrossRef]
  20. G. Rong, “Highly sensitive porous silicon membrane waveguide sensor using ultra-high order mode,” in “Symp. Photonics Optoelectron.”, (2009), pp. 1–4.
  21. Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron.25, 1535–1538 (2010).
    [CrossRef]
  22. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19, 11330–11339 (2011).
    [CrossRef] [PubMed]
  23. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
    [CrossRef]
  24. J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
    [CrossRef]
  25. P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
    [CrossRef]
  26. M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).
  27. A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
    [CrossRef]
  28. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37, 256–258 (2012).
    [CrossRef] [PubMed]
  29. G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
    [CrossRef]

2013 (1)

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

2012 (2)

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37, 256–258 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (1)

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron.25, 1535–1538 (2010).
[CrossRef]

2009 (2)

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

2008 (3)

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
[CrossRef]

2007 (1)

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

2006 (1)

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

2005 (2)

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30, 1273–1275 (2005).
[CrossRef] [PubMed]

L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
[CrossRef]

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

2002 (2)

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
[CrossRef]

2001 (1)

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

2000 (3)

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
[CrossRef]

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

1999 (1)

P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
[CrossRef]

1996 (1)

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Allcock, P.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Álvarez, J.

Amato, G.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

Anderson, M. A.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Anne, M.-L.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Arcari, P.

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

Arens-Fischer, R.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Arrand, H. F.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Benson, T. M.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Berger, M. G.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Bernini, R.

Bettotti, P.

Bjarklev, A.

Boarino, L.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

Boisrobert, C.

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
[CrossRef]

Borini, S.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

Boussard-Pledel, C.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Bureau, B.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Cadarso, V. J.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

Camarchia, V.

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

Campopiano, S.

Canham, L. T.

P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
[CrossRef]

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Carlsen, A.

Chan, S.

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

Charrier, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
[CrossRef]

Chen, L.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

Chirvony, V.

Colas, F.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Compère, C.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Coppola, G.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

Cox, T. I.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Cras, J. J.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

Darder, M.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

De Tommasi, E.

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

DeLouise, L. A.

L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005).
[CrossRef] [PubMed]

Di Sarno, V.

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

Domínguez, C.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

Dumeige, Y.

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

Fainman, Y.

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

Fauchet, P.

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

Fernández-Sánchez, C.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

Folkenberg, J. R.

Francia, G. D.

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

Gao, J.

J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
[CrossRef]

Gao, T.

J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
[CrossRef]

Golden, J. P.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

Guendouz, M.

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

Haesaert, S.

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

Haji, L.

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
[CrossRef]

Hansen, T. P.

Hazzard, J. W.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

Hill, D.

Hiraoui, M.

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

Hoffman, K. E.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

Hoiby, P. E.

Hollings, M.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Hyodo, K.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Inoue, S.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Iodice, M.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

Jensen, J. B.

Jia, Z.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

Jiao, Y.

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron.25, 1535–1538 (2010).
[CrossRef]

Joubert, P.

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

Keirsse, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Kou, P. M.

L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005).
[CrossRef] [PubMed]

Kumar, N.

Lamberti, A.

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

Le Person, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Lhermite, H.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Li, Y.

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

Li, Y. Y.

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
[CrossRef]

Ligler, F. S.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

Liu, R.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

Llobera, A.

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

Longo, O.

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

Loni, A.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Loreal, O.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Lorrain, N.

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

Lupi, C.

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
[CrossRef]

Luth, H.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Lv, X.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

Ma, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

Mansuripur, M.

Marino, A.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

Martínez-Pastor, J.

Massera, E.

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

Mernaugh, R. L.

G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
[CrossRef]

Miller, B.

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

Miller, B. L.

L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005).
[CrossRef] [PubMed]

Moretti, L.

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
[CrossRef]

Munder, H.

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Murphy, T. E.

Nazabal, V.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Nicklin, S.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Oueslati, M.

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

Pavesi, L.

Pedersen, L. H.

Perkins, E. A.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Peyghambarian, N.

Pirasteh, P.

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

Polynkin, A.

Polynkin, P.

Rea, I.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

Reeves, C.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Rendina, I.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
[CrossRef]

Riishede, J.

Rocchia, M.

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

Rong, G.

G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
[CrossRef]

G. Rong, “Highly sensitive porous silicon membrane waveguide sensor using ultra-high order mode,” in “Symp. Photonics Optoelectron.”, (2009), pp. 1–4.

Rossi, A. M.

J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37, 256–258 (2012).
[CrossRef] [PubMed]

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
[CrossRef]

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

Rothberg, L.

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

Rotiroti, L.

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

Rowe-Taitt, C. A.

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

Russell, P. S. J.

P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
[CrossRef]

Ryckman, J. D.

G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
[CrossRef]

Sailor, M. J.

J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
[CrossRef]

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

Sanges, C.

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

Sarro, P. M.

Schmedake, T. A.

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

Smith, R. G.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Snow, P.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Snow, P. A.

P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
[CrossRef]

Squire, E. K.

P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
[CrossRef]

Squirrell, D. J.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Stefano, L. D.

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
[CrossRef]

Suárez, I.

Tinsley-Bown, A.

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

Wei, X.

Weiss, S. M.

X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19, 11330–11339 (2011).
[CrossRef] [PubMed]

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron.25, 1535–1538 (2010).
[CrossRef]

G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
[CrossRef]

Xia, J.

Yanakata, K.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Zeni, L.

Zhang, H.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

Zhou, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

Anal. Chem. (2)

V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008).
[CrossRef] [PubMed]

L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).

A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001).
[CrossRef]

G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008).
[CrossRef]

Biosens. Bioelectron. (3)

Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron.25, 1535–1538 (2010).
[CrossRef]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013).
[CrossRef] [PubMed]

C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004).
[CrossRef]

J. Appl. Phys. (1)

P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006).
[CrossRef]

Langmuir (1)

J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002).
[CrossRef]

Mater. Sci. Eng. B (1)

L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Status Solidi A (3)

P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007).
[CrossRef]

M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003).
[CrossRef]

S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000).
[CrossRef]

Sens. Actuators B (2)

R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002).
[CrossRef]

I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009).
[CrossRef]

Sensors (2)

E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008).
[CrossRef]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996).
[CrossRef]

Other (1)

G. Rong, “Highly sensitive porous silicon membrane waveguide sensor using ultra-high order mode,” in “Symp. Photonics Optoelectron.”, (2009), pp. 1–4.

Supplementary Material (4)

» Media 1: AVI (579 KB)     
» Media 2: AVI (913 KB)     
» Media 3: AVI (580 KB)     
» Media 4: AVI (816 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fabrication process used to produce integrated porous silicon waveguides. (a) A three-layer planar waveguide is formed by electrochemical etching of crystalline silicon. (b) Two parallel lines are inscribed using direct-write laser oxidation, to form the left and right boundaries of the optical waveguide. (c) The oxidized regions are removed in a solution of dilute HF. (d) A planarizing polymer layer (CYTOP) is spin-coated over the structure. (e) The sensing window is photolithographically defined, and (f) reactive ion etching is used to expose the underlying porous silicon waveguide.

Fig. 2
Fig. 2

(a) Schematic of integrated MZI waveguide. (b) Cross-sectional scanning electron micrograph (SEM) of a single waveguide. (c) Optical micrograph of Y-branch. (d) Optical micrograph showing selectively exposed sensing window in one arm of the interferometer.

Fig. 3
Fig. 3

Observations of optical pattern emerging from porous silicon waveguide for (a) singlemode waveguide with y-branch, (b) multimode optical waveguide with y-branch, (c) singlemode straight waveguide and (d) multimode straight waveguide. The corresponding multimedia files ( Media 1, Media 2, Media 3 and Media 4) show that when the input fiber is moved, the output light distribution changes in the multimode case, but remains unchanged (apart from brightness) in the singlemode case.

Fig. 4
Fig. 4

Experimental setups used to conduct interferometric porous waveguide measurements. (a) Integrated Mach-Zehnder interferometer (MZI) constructed using porous silicon waveguides. (b) Fiber-based MZI, with porous waveguide incorporated in one arm of interferometer, and (c) Heterodyne fiber-based interferometer, enabling simultaneous measurement of magnitude and phase shift in porous waveguide sensor.

Fig. 5
Fig. 5

Comparison of stability from integrated porous Mach-Zehnder interferometer and fiber-based waveguide interferometer, conducted over 400 s with no analyte present. Prior to observation, both systems were adjusted to have full interferometric fringe contrast and equal fringe amplitude.

Fig. 6
Fig. 6

Interference signal measured from (a) integrated nanoporous silicon MZI device and (b) straight waveguide incorporated into an external fiber MZI. The interference signal is observed over a 400 s time interval during which a drop of isopropanol is introduced to the porous waveguide.

Fig. 7
Fig. 7

Heterodyne measurement of intensity and phase change from a 200 μm porous silicon waveguide that is exposed to isopropanol.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = Δ ϕ λ 2 π L

Metrics