Abstract

We report an experiment demonstrating quantum frequency conversion of weak light pulses compatible with atomic quantum memories to telecommunication wavelengths. We use a PPLN nonlinear waveguide to convert weak coherent states at the single photon level with a duration of 30 ns from a wavelength of 780 nm to 1552 nm. We measure a maximal waveguide internal (external) conversion efficiency ηγint = 0.41 (ηext = 0.25), and we show that the signal to noise ratio (SNR) is good enough to reduce the input photon number below 1. In addition, we show that the noise generated by the pump beam in the crystal is proportional to the spectral bandwidth of the device, suggesting that narrower filtering could significantly increase the SNR. Finally, we demonstrate that the quantum frequency converter can operate in the quantum regime by converting a time-bin qubit and measuring the qubit fidelity after conversion.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
    [CrossRef]
  2. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
    [CrossRef] [PubMed]
  3. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
    [CrossRef]
  4. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
    [CrossRef] [PubMed]
  5. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
    [CrossRef] [PubMed]
  6. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
    [CrossRef] [PubMed]
  7. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
    [CrossRef]
  8. M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012).
    [CrossRef]
  9. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992).
    [CrossRef] [PubMed]
  10. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
    [CrossRef] [PubMed]
  11. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010).
    [CrossRef]
  12. S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
    [CrossRef] [PubMed]
  13. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett.35, 2591–2593 (2010).
    [CrossRef] [PubMed]
  14. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
    [CrossRef] [PubMed]
  15. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
    [CrossRef]
  16. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011).
    [CrossRef] [PubMed]
  17. S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
    [CrossRef] [PubMed]
  18. K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
    [CrossRef] [PubMed]
  19. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
    [CrossRef]
  20. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
    [CrossRef]
  21. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
    [CrossRef] [PubMed]
  22. D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
    [CrossRef]
  23. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005).
    [CrossRef] [PubMed]
  24. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010).
    [CrossRef] [PubMed]
  25. M. A. Albota and F. C. Wong, “Efficient single-photon counting at 1.55 μ m by means of frequency upconversion,” Opt. Lett.29, 1449–1451 (2004).
    [CrossRef] [PubMed]
  26. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett.29, 1518–1520 (2004).
    [CrossRef] [PubMed]
  27. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in “OSA Technical Digest (CD),” (Optical Society of America, 2009), pp. NTuB1.
  28. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013).
    [CrossRef] [PubMed]
  29. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
    [CrossRef] [PubMed]
  30. H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
    [CrossRef] [PubMed]
  31. M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
    [CrossRef]
  32. S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Phys. Rev. Lett.74, 1259–1263 (1995).
    [CrossRef] [PubMed]
  33. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
    [CrossRef] [PubMed]
  34. F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
    [CrossRef]
  35. P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012).
    [CrossRef] [PubMed]

2013 (2)

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013).
[CrossRef] [PubMed]

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

2012 (6)

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012).
[CrossRef] [PubMed]

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012).
[CrossRef]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

2011 (6)

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011).
[CrossRef] [PubMed]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
[CrossRef]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
[CrossRef] [PubMed]

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

2010 (8)

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010).
[CrossRef] [PubMed]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010).
[CrossRef]

Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett.35, 2591–2593 (2010).
[CrossRef] [PubMed]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
[CrossRef]

2008 (1)

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

2006 (1)

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

2005 (3)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005).
[CrossRef] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

1998 (1)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

1995 (1)

S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Phys. Rev. Lett.74, 1259–1263 (1995).
[CrossRef] [PubMed]

1992 (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992).
[CrossRef] [PubMed]

Abe, E.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Afzelius, M.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Agha, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Albota, M. A.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Alibart, O.

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

Almasi, A.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Ates, S.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Badolato, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

Becher, C.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011).
[CrossRef] [PubMed]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Chen, S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Chen, Y.-A.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Chou, C. W.

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Cristiani, M.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

Curtz, N.

De Greve, K.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

de Riedmatten, H.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

Diamanti, E.

Ding, Y.

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

Dudin, Y. O.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

Fejer, M. M.

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013).
[CrossRef] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005).
[CrossRef] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett.29, 1518–1520 (2004).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in “OSA Technical Digest (CD),” (Optical Society of America, 2009), pp. NTuB1.

Felinto, D.

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

Figueroa, E.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

Forchel, A.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

Gulinatti, A.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Gündogan, M.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

Hadfield, R. H.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

Hemmer, P. R.

M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012).
[CrossRef]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Hofling, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992).
[CrossRef] [PubMed]

Ikuta, R.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Imoto, N.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Issautier, A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Jetter, M.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Kaiser, F.

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

Kamp, M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Keler, C. A.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Kettler, J.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Kim, N. Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Kim, Y.-S.

Kimble, H. J.

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Koashi, M.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Kumar, P.

M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012).
[CrossRef]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992).
[CrossRef] [PubMed]

Kuo, P. S.

Kurz, J. R.

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Kuzmich, A.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Langrock, C.

Laurat, J.

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

Lauritzen, B.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Ledingham, P. M.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

Lenhard, A.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011).
[CrossRef] [PubMed]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

Lvovsky, A. I.

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012).
[CrossRef] [PubMed]

Ma, L.

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010).
[CrossRef]

MacRae, A.

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012).
[CrossRef] [PubMed]

Maier, S.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

Martin, A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

Massar, S.

S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Phys. Rev. Lett.74, 1259–1263 (1995).
[CrossRef] [PubMed]

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

McKinstrie, C. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

McMahon, P. L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Michler, P.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Minár, J.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Natarajan, C. M.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Ngah, L. A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

Nolleke, C.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

Ou, Z. Y.

Palittapongarnpim, P.

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012).
[CrossRef] [PubMed]

Pan, J.-W.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Pelc, J. S.

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013).
[CrossRef] [PubMed]

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in “OSA Technical Digest (CD),” (Optical Society of America, 2009), pp. NTuB1.

Phillips, C. R.

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

Popescu, S.

S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Phys. Rev. Lett.74, 1259–1263 (1995).
[CrossRef] [PubMed]

Radic, S.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Rakher, M. T.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010).
[CrossRef]

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

Rech, I.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

Reiserer, A.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

Rempe, G.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

Ritter, S.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

Roussev, R. V.

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

Schmiedmayer, J.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Schneider, C.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Schomburg, E. W.

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

Shahriar, M. S.

M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012).
[CrossRef]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

Slattery, O.

Specht, H. P.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

Srinivasan, K.

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010).
[CrossRef]

Takesue, H.

Tang, X.

Tanzilli, S.

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

Thew, R.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

Uphoff, M.

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

Wong, F. C.

Yamamoto, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Yamamoto, Y.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30, 1725–1727 (2005).
[CrossRef] [PubMed]

Yu, L.

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

Yuan, Z.-S.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications c-band,” Opt. Express19, 12825–12836 (2011).
[CrossRef] [PubMed]

Zbinden, H.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

Zhang, Q.

Zhao, B.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Zhao, R.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

J. Physics B (1)

M. S. Shahriar, P. Kumar, and P. R. Hemmer, “Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion,” J. Physics B45, 124018 (2012).
[CrossRef]

Laser Phys. Lett. (1)

F. Kaiser, A. Issautier, L. A. Ngah, O. Alibart, A. Martin, and S. Tanzilli, “A versatile source of polarization entangled photons for quantum network applications,” Laser Phys. Lett.10, 045202 (2013).
[CrossRef]

Nat. Commun. (1)

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun.2, 537– (2011).
[CrossRef]

Nat. Photonics (1)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010).
[CrossRef]

Nat. Phys. (2)

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys.6, 894–899 (2010).
[CrossRef]

D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, “Conditional control of the quantum states of remote atomic memories for quantum networking,” Nat. Phys.2, 844–848 (2006).
[CrossRef]

Nature (7)

K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012).
[CrossRef] [PubMed]

H. P. Specht, C. Nolleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature473, 190–193 (2011).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature421, 509–513 (2003).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437, 116–120 (2005).
[CrossRef] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature438, 828–832 (2005).
[CrossRef] [PubMed]

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Experimental demonstration of a bdcz quantum repeater node,” Nature454, 1098–1101 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. A (2)

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
[CrossRef]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, and N. Gisin, “Approaches for a quantum memory at telecommunication wavelengths,” Phys. Rev. A83, 012318 (2011).
[CrossRef]

Phys. Rev. Lett. (8)

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett.81, 5932–5935 (1998).
[CrossRef]

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett.68, 2153–2156 (1992).
[CrossRef] [PubMed]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett.104, 080502 (2010).
[CrossRef] [PubMed]

S. Zaske, A. Lenhard, C. A. Keler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett.109, 147404– (2012).
[CrossRef] [PubMed]

S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot,” Phys. Rev. Lett.109, 147405 (2012).
[CrossRef] [PubMed]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, and H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett.108, 190504 (2012).
[CrossRef]

S. Massar and S. Popescu, “Optimal extraction of information from finite quantum ensembles,” Phys. Rev. Lett.74, 1259–1263 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys.83, 33–80 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

P. Palittapongarnpim, A. MacRae, and A. I. Lvovsky, “Note: A monolithic filter cavity for experiments in quantum optics,” Rev. Sci. Instrum.83, 066101 (2012).
[CrossRef] [PubMed]

Other (1)

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in “OSA Technical Digest (CD),” (Optical Society of America, 2009), pp. NTuB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the experimental setup. The pump laser is a diode at 1570 nm. PC: polarization controller. AMP: fiber amplifier. NIR1: band-pass filter to clean the ASE. The input light is obtained by a diode–tapered amplifier system at 780 nm. AOMx2: acousto-optic modulator in double passage. WP: half- and quarter- waveplates. OD: neutral density filters. The pump and input beams are overlapped on a dichroic mirror DM. L1: in-coupling lens. WG: non-linear waveguide. L2: out-coupling lens. NIR2: band-pass filter centered at 1552 nm plus long-pass filter with cut-off at 1450 nm. DG: diffraction grating. SPD: single photon detector. DDG: digital delay generator. INT: fiber interferometer.

Fig. 2
Fig. 2

(a) Transmission of weak input pulses through a cloud of cold 87Rb atoms as a function of detuning. The probe light at 780 nm is converted to 1552 nm after interacting with the atomic cloud and then detected with the SPD. (b) Temporal shape of the converted photons. The time-bin was 0.64 ns. The shaded areas represent the detector gates of 20 and 50 ns. Inset: signal to noise ratio (left axis) and β factor (right axis) as a function of the detection window. The plot is obtained using the data points shown in the main figure (see text for details).

Fig. 3
Fig. 3

(a) Detection probabilities with (pS, blue open circles) and without ( pN, red squares) input signal (μin= 6.1) as a function of the pump power Pp measured after the waveguide. The green triangles correspond to the pure signal (pSpN ). (b) External conversion efficiency (ηext ) as a function of Pp (red dots, left axis). The continuous line is a fit using Eq. (2). The red shaded area represents the 95 % confidence interval of the fit. We observe a normalized conversion efficiency of ηn = 650(70)%/W. On the right axis we show the signal to noise ratio. The experimental data (blue dots) are compared with Eq. (3), where all the parameters are determined independently. The blue shaded area accounts for the errors associated to the different quantities involved in Eq. (3).

Fig. 4
Fig. 4

(a) The mean number of photons in the input pulse required to achieve a SNR = 1 (μ1) is plotted as a function of the filter width (Δλ). The solid line is a linear fit with no offset. (b) Signal to noise ratio as a function of the mean input photon number. The data shown correspond to the point highlighted with a blue circle in (a). In this case μ1= 0.7 ± 0.1. (c) Transmission of the filtering stage as a function of wavelength for the data points shown in (b). Here the linewidth is Δλ = 0.68 ± 0.01 nm. The vertical dotted line indicates the target wavelength λout = 1551.6 nm. In this case the filter transmission at λout is T(λout) = 0.23 ±0.01.

Fig. 5
Fig. 5

(a) Visibility of the interference fringes as a function of μin for ΔtG= 20 ns (red plain squares) and ΔtG= 50 ns (blue open circles). The pump power is 130 mW. The visibilities are corrected for the maximal visibility of the interferometer Vmax= 0.96. The solid lines are fits with Eq. (4) and the shaded areas represent the 95% confidence interval of the fits. (b) Comparison between experimental fidelities measured for ΔtG= 20 ns (shaded area taken from (a)) and the best achievable fidelities using a classical measure and prepare strategy. The dashed line corresponds to η= 1, the solid line to the external efficiency ηext= 0.10 and the dotted line to device efficiency ηdev= 0.025 inferred for these measurements. (c) Same as (b) but for ΔtG= 50 ns. The solid line corresponds to ηext= 0.21 and the dotted line to device efficiency ηdev= 0.055.

Tables (2)

Tables Icon

Table 1 Summary of the losses at the different elements.

Tables Icon

Table 2 Efficiency definitions and values. See text for details.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N ( P p ) = α P p + D C ,
η ext = f ( P p ) = η ext M sin 2 ( L P p η n ) ,
SNR D C ( P p ) = p S p N p N = μ in η tot f ( P p ) α P p + D C .
V = V 0 μ in μ in + μ 1 / 2 .

Metrics