Abstract

A planar dielectric waveguide based structure for bio-sensing purpose is introduced. The proposed device is a silicon-based WGM disc resonator operating within the range of 75-110 GHz (W-band). The sensor is an integrated, miniaturized, low-cost, and easy-to-fabricate bio-sensor structure. The proposed sensor can be used for a number of DNA characterization tasks including Mutation in DNA oligonucleotide. Two types of DNAs, single strand and double strand DNAs, are successfully tested by our integrated sensor. The measurement repeatability and selectivity of the proposed sensor are examined through the different experimental lab-tests.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009).
    [CrossRef] [PubMed]
  2. S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
    [CrossRef] [PubMed]
  3. M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem13(2), 427–436 (2012).
    [CrossRef] [PubMed]
  4. J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
    [CrossRef] [PubMed]
  5. K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).
  6. C. Vedrenne and J. Arnold, “Whispering gallery modes of dielectric resonators” IEE Proceedings Microwaves, Optics and Antennas, 129(4), 183–187, (1982).
    [CrossRef]
  7. E. N. Shaforost, N. Klein, A. I. Gubin, A. A. Barannik and A. M. Klushin “Microwave-millimetre wave WGM resonators for evanescent sensing of nanolitre liquid substances,” Microwave Conference EuMC 2009. European, 45–48, (2009).
  8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  9. H. Quan and Z. Guo, “Simulation of single transparent molecule interaction with an optical microcavity,” Nanotechnology18(37), 375702 (2007).
    [CrossRef]
  10. M. Basha, B. Biglarbegian, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “Low-cost, monolithic and integrated whispering gallery mode ring resonator for sensing applications,” European Microwave Conference (EuMC), 2011 41st European, 515–518, (2011).
  11. A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
    [CrossRef]
  12. M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylendrical anisotropic dielectric resonators,” IEEE Trans. Microw. Theory Tech.39(12), 2077–2082 (1991).
    [CrossRef]
  13. R. K. Mongia, “Resonant frequency of cylendrical dielectric resonator placed in an MIC environment,” IEEE Trans. Microw. Theory Tech.38(6), 802–804 (1990).
    [CrossRef]
  14. L. A. Bermudez and P. Y. Guillon, “Application of variational principle for calculation of resonant frequencies of cylendrical dielectric resonators,” Electron. Lett.22(1), 31–33 (1986).
    [CrossRef]
  15. M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011).
    [CrossRef]
  16. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Büttner, “Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization,” Appl. Opt.41(10), 2074–2078 (2002).
    [CrossRef] [PubMed]

2012 (2)

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem13(2), 427–436 (2012).
[CrossRef] [PubMed]

A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
[CrossRef]

2011 (1)

M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011).
[CrossRef]

2009 (2)

M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009).
[CrossRef] [PubMed]

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

2008 (3)

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

2007 (1)

H. Quan and Z. Guo, “Simulation of single transparent molecule interaction with an optical microcavity,” Nanotechnology18(37), 375702 (2007).
[CrossRef]

2002 (1)

1991 (1)

M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylendrical anisotropic dielectric resonators,” IEEE Trans. Microw. Theory Tech.39(12), 2077–2082 (1991).
[CrossRef]

1990 (1)

R. K. Mongia, “Resonant frequency of cylendrical dielectric resonator placed in an MIC environment,” IEEE Trans. Microw. Theory Tech.38(6), 802–804 (1990).
[CrossRef]

1986 (1)

L. A. Bermudez and P. Y. Guillon, “Application of variational principle for calculation of resonant frequencies of cylendrical dielectric resonators,” Electron. Lett.22(1), 31–33 (1986).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

Baaske, M.

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem13(2), 427–436 (2012).
[CrossRef] [PubMed]

Baets, R.

K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).

Bermudez, L. A.

L. A. Bermudez and P. Y. Guillon, “Application of variational principle for calculation of resonant frequencies of cylendrical dielectric resonators,” Electron. Lett.22(1), 31–33 (1986).
[CrossRef]

Bienstman, P.

K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).

Bolivar, P. H.

Bosserhoff, A.

Brucherseifer, M.

Büttner, R.

Cagnin, S.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Caldwell, C. W.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

Campbell, P. J.

M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009).
[CrossRef] [PubMed]

Caraballo, M.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Danley, D.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

De Backere, P.

K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).

De Vos, K.

K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).

Fan, X.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

Futreal, P. A.

M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009).
[CrossRef] [PubMed]

Gigoyan, S.

A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
[CrossRef]

Guiducci, C.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Guillon, P. Y.

L. A. Bermudez and P. Y. Guillon, “Application of variational principle for calculation of resonant frequencies of cylendrical dielectric resonators,” Electron. Lett.22(1), 31–33 (1986).
[CrossRef]

Guo, Z.

H. Quan and Z. Guo, “Simulation of single transparent molecule interaction with an optical microcavity,” Nanotechnology18(37), 375702 (2007).
[CrossRef]

Hammad, H. F.

M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011).
[CrossRef]

Kheir, M. S.

M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011).
[CrossRef]

Kurz, H.

Lanfranchi, G.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Mann, A. G.

M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylendrical anisotropic dielectric resonators,” IEEE Trans. Microw. Theory Tech.39(12), 2077–2082 (1991).
[CrossRef]

Martini, P.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Mongia, R. K.

R. K. Mongia, “Resonant frequency of cylendrical dielectric resonator placed in an MIC environment,” IEEE Trans. Microw. Theory Tech.38(6), 802–804 (1990).
[CrossRef]

Nagel, M.

Neshat, M.

A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
[CrossRef]

Omar, A.

M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011).
[CrossRef]

Quan, H.

H. Quan and Z. Guo, “Simulation of single transparent molecule interaction with an optical microcavity,” Nanotechnology18(37), 375702 (2007).
[CrossRef]

Ross, M.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Safavi-Naeini, S.

A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
[CrossRef]

Santaana, M.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Shi, H.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

Stratton, M. R.

M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009).
[CrossRef] [PubMed]

Suter, J. D.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

Taeb, A.

A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
[CrossRef]

Tobar, M. E.

M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylendrical anisotropic dielectric resonators,” IEEE Trans. Microw. Theory Tech.39(12), 2077–2082 (1991).
[CrossRef]

Vollmer, F.

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem13(2), 427–436 (2012).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

West, T.

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

White, I. M.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

Zhu, H.

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

J. D. Suter, I. M. White, H. Zhu, H. Shi, C. W. Caldwell, and X. Fan, “Label-free quantitative DNA detection using the liquid core optical ring resonator,” Biosens. Bioelectron.23(7), 1003–1009 (2008).
[CrossRef] [PubMed]

ChemPhysChem (1)

M. Baaske and F. Vollmer, “Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform,” ChemPhysChem13(2), 427–436 (2012).
[CrossRef] [PubMed]

Electron. Lett. (1)

L. A. Bermudez and P. Y. Guillon, “Application of variational principle for calculation of resonant frequencies of cylendrical dielectric resonators,” Electron. Lett.22(1), 31–33 (1986).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. S. Kheir, H. F. Hammad, and A. Omar, “Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators,” IEEE Trans. Instrum. Meas.60(8), 2942–2950 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

M. E. Tobar and A. G. Mann, “Resonant frequencies of higher order modes in cylendrical anisotropic dielectric resonators,” IEEE Trans. Microw. Theory Tech.39(12), 2077–2082 (1991).
[CrossRef]

R. K. Mongia, “Resonant frequency of cylendrical dielectric resonator placed in an MIC environment,” IEEE Trans. Microw. Theory Tech.38(6), 802–804 (1990).
[CrossRef]

Int. Journal of Microwave and Wireless Tech. (1)

A. Taeb, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “A low-cost millimeter-wave whispering gallery-mode-based sensor: design considerations and accurate analysis,” Int. Journal of Microwave and Wireless Tech.4(3), 341–348 (2012).
[CrossRef]

Nanotechnology (1)

H. Quan and Z. Guo, “Simulation of single transparent molecule interaction with an optical microcavity,” Nanotechnology18(37), 375702 (2007).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008).
[CrossRef] [PubMed]

Nature (1)

M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature458(7239), 719–724 (2009).
[CrossRef] [PubMed]

Sensors (Basel) (1)

S. Cagnin, M. Caraballo, C. Guiducci, P. Martini, M. Ross, M. Santaana, D. Danley, T. West, and G. Lanfranchi, “Overview of electrochemical DNA biosensors: new approaches to detect the expression of life,” Sensors (Basel)9(4), 3122–3148 (2009).
[CrossRef] [PubMed]

Transparent Optical Networks. ICTON (1)

K. De Vos, P. De Backere, R. Baets, and P. Bienstman, “Label-free biosensors on silicon-on-insulator optical chips based on microring cavities and surface plasmon interferometry,” Transparent Optical Networks. ICTON2008(2), 88–91 (2008).

Other (3)

C. Vedrenne and J. Arnold, “Whispering gallery modes of dielectric resonators” IEE Proceedings Microwaves, Optics and Antennas, 129(4), 183–187, (1982).
[CrossRef]

E. N. Shaforost, N. Klein, A. I. Gubin, A. A. Barannik and A. M. Klushin “Microwave-millimetre wave WGM resonators for evanescent sensing of nanolitre liquid substances,” Microwave Conference EuMC 2009. European, 45–48, (2009).

M. Basha, B. Biglarbegian, M. Neshat, S. Gigoyan, and S. Safavi-Naeini, “Low-cost, monolithic and integrated whispering gallery mode ring resonator for sensing applications,” European Microwave Conference (EuMC), 2011 41st European, 515–518, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a) General configuration of the proposed sensor. b) Cross section of a general insulated DR. c) The equivalent model for calculating the radial characteristic equation. d) The equivalent two-layer slab waveguide for calculating the axial characteristic equation.

Fig. 2
Fig. 2

a) The measurement setup, b) The sensor inside the fixture, c) SOI sensor, d) The comparison between the S21 obtained from measurement with that of simulation.

Fig. 3
Fig. 3

The measured resonance frequency shift for single strand (SS) and double strand (DS) DNA samples. The repeatability is validated for each sample.

Tables (1)

Tables Icon

TABLE 1 Comparison between the Resonance FREQUENCIES Obtained from EDC-variational Method and Full-wave Simulation for an Insulated SOI Disc

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ J n ( k ρ a ) ( k ρ a ) J n ( k ρ a ) + K n ( α ρ a ) ( α ρ a ) K n ( α ρ a ) ][ J n ( k ρ a ) ( k ρ a ) J n ( k ρ a ) + K n ( α ρ a ) ε e ( α ρ a ) K n ( α ρ a ) ] =[ n( ε e -1 ) k y k 0 k ρ 2 ],
[ 1+( α 1 ε r2 k y ε r1 )tanh( α 1 h 1 )tanh( k y h 2 ) ]= k z α 0 ε r2 [ tan( k y h 2 )+( α 1 ε r2 k y ε r1 )tanh( α 1 h 1 ) ],

Metrics