Abstract

We investigate 128-level set-partitioning quadrature amplitude modulation (128-SP-QAM) experimentally and compare the performance to polarization-multiplexed 16QAM both at the same bit rate and at the same symbol rate. Using a recirculating loop we study both single channel and wavelength-division multiplexing (WDM) transmission and demonstrate a reach of up to 2680 km at a bit-error rate of 10−3 for 128-SP-QAM. We confirm that 128-SP-QAM has an increased sensitivity compared to PM-16QAM and show that the maximum transmission distance can be increased by more than 50 % at the same bit rate for both single channel and WDM transmission. We also investigate the performance at the same symbol rate as a possible fall back solution in a degrading link.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sun, K. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16, 873–879 (2008).
    [CrossRef] [PubMed]
  2. T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
    [CrossRef]
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28, 547–556 (2010).
    [CrossRef]
  4. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.
  5. H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2009), paper OWG2.
    [CrossRef]
  6. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol.27, 5115–5126 (2009).
    [CrossRef]
  7. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express17, 10814–10819 (2009).
    [CrossRef] [PubMed]
  8. G. Ungerboeck, “Channel coding with multilevel / phase signals,” IEEE Trans. Inf. Theory28, 55–67 (1982).
    [CrossRef]
  9. M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011).
    [CrossRef]
  10. M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express19, 7839–7846 (2011).
    [CrossRef] [PubMed]
  11. D. Millar, D. Lavery, S. Makovejs, C. Behrens, B. Thomsen, P. Bayvel, and S. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express19, 9296–9302 (2011).
    [CrossRef] [PubMed]
  12. J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
    [CrossRef]
  13. H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.
  14. M. Karlsson and E. Agrell, “Four-dimensional optimized constellations for coherent optical transmission systems,” in European Conference and Exhibition on Optical Communication (2010), paper We.8.C.3.
    [CrossRef]
  15. M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” in European Conference and Exhibition on Optical Communication, (2011), paper Tu.6.B.6.
    [CrossRef]
  16. X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1.
    [CrossRef]
  17. X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011).
    [CrossRef]
  18. S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
    [CrossRef]
  19. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012).
    [CrossRef] [PubMed]
  20. L. Coelho and N. Hanik, “Global otimization of fiber-optic communication systems using four-dimensional modulation formats,” in European Conference and Exhibition on Optical Communication, (2011), paper Mo.2.B.4.
    [CrossRef]
  21. M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2012), paper OTu2C.1.
    [CrossRef]
  22. J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
    [CrossRef]
  23. M. Sjödin, P. Johannisson, J. Li, E. Agrell, P. Andrekson, and M. Karlsson, “Comparison of 128-SP-QAM with PM-16-QAM,” Opt. Express20, 8356–8366 (2012).
    [CrossRef] [PubMed]
  24. H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.
  25. H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.
  26. T. A. Eriksson, M. Sjödin, P. Andrekson, and M. Karlsson, “Experimental demonstration of 128-SP-QAM in uncompensated long-haul transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.2.
  27. J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.
  28. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express19, 7734–7741 (2011).
    [CrossRef] [PubMed]
  29. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179 (2010).
    [CrossRef]
  30. T. Pfau, S. Hoffmann, and R. Nóe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27, 989–999 (2009).
    [CrossRef]
  31. J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory28, 227–232 (1982).
    [CrossRef]
  32. F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
    [CrossRef]
  33. B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
    [CrossRef]
  34. T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

2013 (3)

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

2012 (4)

B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
[CrossRef]

M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2012), paper OTu2C.1.
[CrossRef]

M. Sjödin, P. Johannisson, J. Li, E. Agrell, P. Andrekson, and M. Karlsson, “Comparison of 128-SP-QAM with PM-16-QAM,” Opt. Express20, 8356–8366 (2012).
[CrossRef] [PubMed]

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012).
[CrossRef] [PubMed]

2011 (6)

2010 (3)

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179 (2010).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28, 547–556 (2010).
[CrossRef]

2009 (3)

2008 (1)

2006 (1)

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

1982 (2)

G. Ungerboeck, “Channel coding with multilevel / phase signals,” IEEE Trans. Inf. Theory28, 55–67 (1982).
[CrossRef]

J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory28, 227–232 (1982).
[CrossRef]

Achiam, Y.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Adamczyk, O.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Agrell, E.

M. Sjödin, P. Johannisson, J. Li, E. Agrell, P. Andrekson, and M. Karlsson, “Comparison of 128-SP-QAM with PM-16-QAM,” Opt. Express20, 8356–8366 (2012).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2012), paper OTu2C.1.
[CrossRef]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express19, 7734–7741 (2011).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” in European Conference and Exhibition on Optical Communication, (2011), paper Tu.6.B.6.
[CrossRef]

E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol.27, 5115–5126 (2009).
[CrossRef]

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express17, 10814–10819 (2009).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Four-dimensional optimized constellations for coherent optical transmission systems,” in European Conference and Exhibition on Optical Communication (2010), paper We.8.C.3.
[CrossRef]

Alreesh, S.

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Andrekson, P.

Andrekson, P. A.

Batshon, H. G.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Batshon, H.G.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

Bayvel, P.

Behrens, C.

Bergano, N. S.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Bergano, N.S.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

Bertran-Pardo, O.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Bhandare, S.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Bigo, S.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

Brindel, P.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Buchali, F.

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

Buhl, L. L.

Bülow, H.

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2009), paper OWG2.
[CrossRef]

Burrows, E.

Cai, J.-X.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

Chandrasekhar, S.

X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011).
[CrossRef]

X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1.
[CrossRef]

Charlet, G.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Chraplyvy, A.

Coelho, L.

L. Coelho and N. Hanik, “Global otimization of fiber-optic communication systems using four-dimensional modulation formats,” in European Conference and Exhibition on Optical Communication, (2011), paper Mo.2.B.4.
[CrossRef]

Conway, J.

J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory28, 227–232 (1982).
[CrossRef]

Davidson, C. R.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Doerr, C. R.

Elschner, R.

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Eriksson, T. A.

T. A. Eriksson, M. Sjödin, P. Andrekson, and M. Karlsson, “Experimental demonstration of 128-SP-QAM in uncompensated long-haul transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.2.

Fischer, J. K.

M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011).
[CrossRef]

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Foursa, D. G.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Foursa, D.G.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

Frey, F.

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Fujiwara, M.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Ghazisaeidi, A.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Gnauck, A. H.

Hanik, N.

L. Coelho and N. Hanik, “Global otimization of fiber-optic communication systems using four-dimensional modulation formats,” in European Conference and Exhibition on Optical Communication, (2011), paper Mo.2.B.4.
[CrossRef]

Hauske, F.

F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
[CrossRef]

Hoffmann, S.

T. Pfau, S. Hoffmann, and R. Nóe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27, 989–999 (2009).
[CrossRef]

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Horikoshi, K.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Ibrahim, S.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Idler, W.

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

Ishii, H.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Johannisson, P.

Kaneda, N.

B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
[CrossRef]

T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

Karlsson, M.

M. Sjödin, P. Johannisson, J. Li, E. Agrell, P. Andrekson, and M. Karlsson, “Comparison of 128-SP-QAM with PM-16-QAM,” Opt. Express20, 8356–8366 (2012).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2012), paper OTu2C.1.
[CrossRef]

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express19, 7734–7741 (2011).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” in European Conference and Exhibition on Optical Communication, (2011), paper Tu.6.B.6.
[CrossRef]

M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express19, 7839–7846 (2011).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express17, 10814–10819 (2009).
[CrossRef] [PubMed]

E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol.27, 5115–5126 (2009).
[CrossRef]

T. A. Eriksson, M. Sjödin, P. Andrekson, and M. Karlsson, “Experimental demonstration of 128-SP-QAM in uncompensated long-haul transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.2.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

M. Karlsson and E. Agrell, “Four-dimensional optimized constellations for coherent optical transmission systems,” in European Conference and Exhibition on Optical Communication (2010), paper We.8.C.3.
[CrossRef]

Kasai, K.

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

Kobayashi, T.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Koizumi, Y.

Krongold, B.

B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
[CrossRef]

T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

Kuebart, W.

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

Lavery, D.

Lee, S.

B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
[CrossRef]

T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

Li, J.

Liu, X.

X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011).
[CrossRef]

X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1.
[CrossRef]

Magarini, M.

Makovejs, S.

Mardoyan, H.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Masuda, H.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Matsui, M.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Mazurczyk, M.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Meuer, C.

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Millar, D.

Miyamoto, Y.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Mizoguchi, M.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Mohs, G.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Molle, L.

M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011).
[CrossRef]

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Nakazawa, M.

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012).
[CrossRef] [PubMed]

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

Noe, R.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Nóe, R.

Nölle, M.

Nossek, J.

F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
[CrossRef]

Okamoto, S.

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

Omiya, T.

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

Peckham, D.

Peveling, R.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Pfau, T.

B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
[CrossRef]

T. Pfau, S. Hoffmann, and R. Nóe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27, 989–999 (2009).
[CrossRef]

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

Pilipetskii, A.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

Pittalà, F.

F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
[CrossRef]

Porrmann, M.

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

Rahman, T.

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

Renaudier, J.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

Rival, O.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

Roberts, K.

Sakamaki, Y.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Sano, A.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Savory, S.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179 (2010).
[CrossRef]

Schmidt-Langhorst, C.

M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011).
[CrossRef]

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Schubert, C.

M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011).
[CrossRef]

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Sinkin, O.V.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

Sjödin, M.

Sloane, N.

J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory28, 227–232 (1982).
[CrossRef]

Sun, H.

Tafur Monroy, I.

F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
[CrossRef]

Tanimura, T.

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

Thomsen, B.

Tkach, R.

X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011).
[CrossRef]

X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1.
[CrossRef]

Toyoda, K

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

Toyoda, K.

Tran, P.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Ungerboeck, G.

G. Ungerboeck, “Channel coding with multilevel / phase signals,” IEEE Trans. Inf. Theory28, 55–67 (1982).
[CrossRef]

Voicila, A.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

Winzer, P.

Winzer, P. J.

Wood, T.

X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011).
[CrossRef]

X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1.
[CrossRef]

Wu, K.

Wymeersch, H.

Yamazaki, H.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Ye, Y.

F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
[CrossRef]

Yoshida, E.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

Yoshida, M.

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012).
[CrossRef] [PubMed]

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

Zhang, H.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

Electron. Lett. (1)

T. Pfau, S. Hoffmann, R. Peveling, S. Ibrahim, O. Adamczyk, M. Porrmann, S. Bhandare, R. Noe, and Y. Achiam, “Synchronous QPSK transmission at 1.6 Gbit/s with standard DFB lasers and real-time digital receiver,” Electron. Lett.42, 1175–1176 (2006).
[CrossRef]

European Conference and Exhibition on Optical Communication (2)

M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” in European Conference and Exhibition on Optical Communication, (2011), paper Tu.6.B.6.
[CrossRef]

S. Okamoto, K Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in European Conference and Exhibition on Optical Communication, (2010), paper PD 2.3.
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16, 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Krongold, T. Pfau, N. Kaneda, and S. Lee, “Comparison between PS-QPSK and PDM-QPSK with equal rate and bandwidth,” IEEE Photon. Technol. Lett.24, 203–205 (2012).
[CrossRef]

IEEE Trans. Inf. Theory (2)

J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Trans. Inf. Theory28, 227–232 (1982).
[CrossRef]

G. Ungerboeck, “Channel coding with multilevel / phase signals,” IEEE Trans. Inf. Theory28, 55–67 (1982).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (9)

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express19, 7734–7741 (2011).
[CrossRef] [PubMed]

M. Sjödin, P. Johannisson, H. Wymeersch, P. A. Andrekson, and M. Karlsson, “Comparison of polarization-switched QPSK and polarization-multiplexed QPSK at 30 Gbit/s,” Opt. Express19, 7839–7846 (2011).
[CrossRef] [PubMed]

D. Millar, D. Lavery, S. Makovejs, C. Behrens, B. Thomsen, P. Bayvel, and S. Savory, “Generation and long-haul transmission of polarization-switched QPSK at 42.9 Gb/s,” Opt. Express19, 9296–9302 (2011).
[CrossRef] [PubMed]

M. Nölle, J. K. Fischer, L. Molle, C. Schmidt-Langhorst, D. Peckham, and C. Schubert, “Comparison of 8 × 112 Gb/s PS-QPSK and PDM-QPSK signals over transoceanic distances,” Opt. Express19, 24370–24375 (2011).
[CrossRef]

X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Opt. Express19, B868–B881 (2011).
[CrossRef]

M. Sjödin, P. Johannisson, J. Li, E. Agrell, P. Andrekson, and M. Karlsson, “Comparison of 128-SP-QAM with PM-16-QAM,” Opt. Express20, 8356–8366 (2012).
[CrossRef] [PubMed]

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20, 12508–12514 (2012).
[CrossRef] [PubMed]

M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express17, 10814–10819 (2009).
[CrossRef] [PubMed]

H. Sun, K. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16, 873–879 (2008).
[CrossRef] [PubMed]

Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (1)

M. Karlsson and E. Agrell, “Spectrally efficient four-dimensional modulation,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2012), paper OTu2C.1.
[CrossRef]

Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (3)

H. Zhang, H. G. Batshon, D. G. Foursa, M. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu2B.3.

H. Zhang, J.-X. Cai, H.G. Batshon, M. Mazurczyk, O.V. Sinkin, D.G. Foursa, A. Pilipetskii, G. Mohs, and N.S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6 b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper PDP5A.6.

H. Bülow, T. Rahman, F. Buchali, W. Idler, and W. Kuebart, “Transmission of 4-D modulation formats at 28-Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper JW2A.39.

Other (11)

M. Karlsson and E. Agrell, “Four-dimensional optimized constellations for coherent optical transmission systems,” in European Conference and Exhibition on Optical Communication (2010), paper We.8.C.3.
[CrossRef]

X. Liu, T. Wood, R. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2011), paper PDPB1.
[CrossRef]

J. K. Fischer, S. Alreesh, R. Elschner, F. Frey, C. Meuer, L. Molle, C. Schmidt-Langhorst, T. Tanimura, and C. Schubert, “Experimental Investigation of 126-Gb/s 6PolSK-QPSK Signals,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.4.
[CrossRef]

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2010), paper PDPB7.

H. Bülow, “Polarization QAM modulation (POLQAM) for coherent detection schemes,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, (2009), paper OWG2.
[CrossRef]

T. A. Eriksson, M. Sjödin, P. Andrekson, and M. Karlsson, “Experimental demonstration of 128-SP-QAM in uncompensated long-haul transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.2.

J. Renaudier, O. Bertran-Pardo, A. Ghazisaeidi, P. Tran, H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, “Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 Gbaud,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2013), paper OTu3B.1.

J. Renaudier, A. Voicila, O. Bertran-Pardo, O. Rival, M. Karlsson, G. Charlet, and S. Bigo, “Comparison of set-partitioned two-polarization 16QAM formats with PDM-QPSK and PDM-8QAM for optical transmission systems with error-correction coding,” in European Conference and Exhibition on Optical Communication, (2012), paper We.1.C.5.
[CrossRef]

L. Coelho and N. Hanik, “Global otimization of fiber-optic communication systems using four-dimensional modulation formats,” in European Conference and Exhibition on Optical Communication, (2011), paper Mo.2.B.4.
[CrossRef]

F. Pittalà, F. Hauske, Y. Ye, I. Tafur Monroy, and J. Nossek, “Training-based channel estimation for signal equalization and OPM in 16-QAM optical transmission systems,” European Conference and Exhibition on Optical Communication, (2012), paper P3.16.
[CrossRef]

T. Pfau, B. Krongold, S. Lee, and N. Kaneda, “Comparison of bandwidth expansion methods for optical transmission systems,” in Opto-Electronics and Communications Conference, (2012), paper 5B4-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Concept for (a) generating PM-16QAM and (b) generating 128-SP-QAM

Fig. 2
Fig. 2

Experimental setup showing: (a) The transmitter for both PM-16QAM and 128-SP-QAM including electrical eye diagrams of the four 10.5 Gbaud 4PAM driving signals to the I/Q-modulators. (b) The recirculating loop consisting of two spans of 80 km SMF. The band-pass filter is used to suppress out of band ASE noise and the waveshaper (WS) is used both as a band-pass filter and as a gain flattening filter. (c) The coherent receiver. (d) The spectrum launched to the loop in the case of WDM transmission (e) The average spectrum in the loop using the waveshaper as gain flattening filter.

Fig. 3
Fig. 3

Experimental setup for generation of the four 4-level signals needed to generate 128-SP-QAM and PM-16QAM. The RF-Optical delayline used to synchronize the patterns for 128-SP-QAM is also shown. The same setup is used for both PM-16QAM and 128-SP-QAM.

Fig. 4
Fig. 4

Block-scheme of the digital signal processing flow for both 128-SP-QAM and PM-16QAM. For 128-SP-QAM a parity-check is performed and if the parity is incorrect, the most uncertain bit is inverted before the BER is evaluated [31].

Fig. 5
Fig. 5

Measured back to back performance showing BER as a function of OSNR for 10.5 Gbaud PM-16QAM (red triangles), 10.5 Gbaud 128-SP-QAM (green diamonds) and 12.0 Gbaud 128-SP-QAM (blue circles). Solid lines show single channel results and dashed lines show results where optical interleavers and two neighboring channels were present. The numerical results for 128-SP-QAM are achieved by Monte Carlo simulations with AWGN as the only impairment.

Fig. 6
Fig. 6

Transmission results for different launch powers showing (a) single channel transmission of PM-16QAM at 10.5 Gbaud, (b) single channel transmission of 128-SP-QAM at 10.5 Gbaud, (c) single channel transmission of 128-SP-QAM at 12.0 Gbaud, (d) WDM transmission of PM-16QAM, (e) WDM transmission of 128-SP-QAM at 10.5 Gbaud and (f) WDM transmission of 128-SP-QAM at 12.0 Gbaud.

Fig. 7
Fig. 7

Transmission results for the optimized launch power at BER = 10−3 for 10.5 Gbaud PM-16QAM (red triangles), 10.5 Gbaud 128-SP-QAM (green diamonds) and 12.0 Gbaud 128-SP-QAM (blue circles). Solid lines show single channel and dashed lines WDM transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ = d min 2 log 2 M 4 E s ,
S E = log 2 M N / 2 ,

Metrics