Abstract

Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate cyanine dye outer shell have been prepared for the first time. Absorption properties of the colloid were measured in the visible region. This multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with the molecular exciton exhibited by the J-aggregate outer shell. The polyelectrolyte spacer layer promotes the formation of an excitonic J-aggregate while serving as a means of controlling the plasmon-exciton (i.e. plexciton) coupling strength through changing the distance between the core and the shell. An analytical expression based on Mie Theory and the Transfer Matrix Method was obtained for describing the optical response of these multilayered nanostructures. Computational and experimental results indicate that the absorption wavelength of the J-aggregate form of the dye is dependent on both the distance of the dye layer from the silver core and the degree of dye aggregation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).
  3. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
    [CrossRef]
  4. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
    [CrossRef] [PubMed]
  5. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
    [CrossRef] [PubMed]
  6. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
    [CrossRef] [PubMed]
  7. P. J. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
    [CrossRef]
  8. T. Tani, Photographic Sensitivity, (Oxford University, 1995).
  9. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl.50(15), 3376–3410 (2011).
    [CrossRef] [PubMed]
  10. A. S. Davydov, Theory of Molecular Excitons (Plenum, 1971).
  11. M. van Burgel, D. A. Wiersma, and K. Duppen, “The dynamics of one-dimensional excitons in liquids,” J. Chem. Phys.102(1), 20–33 (1995).
    [CrossRef]
  12. J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
    [CrossRef] [PubMed]
  13. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
    [CrossRef] [PubMed]
  14. N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
    [CrossRef]
  15. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
    [CrossRef] [PubMed]
  16. A. Yoshida, Y. Yonezawa, and N. Kometani, “Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling,” Langmuir25(12), 6683–6689 (2009).
    [CrossRef] [PubMed]
  17. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman dyes on silver and gold sols,” J. Phys. Chem.86(17), 3391–3395 (1982).
    [CrossRef]
  18. B. D. Busbee, S. O. Obare, and C. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” J. Adv. Mater.15(5), 414–416 (2003).
    [CrossRef]
  19. Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
    [CrossRef] [PubMed]
  20. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Camb.)0(7), 617–618 (2001).
    [CrossRef]
  21. G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
    [CrossRef]
  22. G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
    [CrossRef]
  23. W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express20(16), 18494–18504 (2012).
    [CrossRef] [PubMed]
  24. H. C. van de Hulst, Light Scattering by Small Particles, (Dover, 1981).
  25. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons,1983).
  26. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
    [CrossRef]
  27. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105(1), 013901 (2010).
    [CrossRef] [PubMed]
  28. Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010).
    [CrossRef]
  29. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98(4), 043101 (2011).
    [CrossRef]
  30. T. Kobayashi, J-Aggregates, (World Scientific Publishing Co. Pte. Ltd., 1996).
  31. A. Dixon, C. Duncan, and H. Samha, “Self assembly of cyanine dye on clay nanoparticles,” Am. J. Undergrad. Res.3, 29–34 (2005).
  32. H. Kuhn and H. D. Foresterling, Principles of Physical Chemistry (Wiley, 2000).
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  34. Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98(4), 043101 (2011).
[CrossRef]

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl.50(15), 3376–3410 (2011).
[CrossRef] [PubMed]

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

2010 (2)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105(1), 013901 (2010).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010).
[CrossRef]

2009 (1)

A. Yoshida, Y. Yonezawa, and N. Kometani, “Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling,” Langmuir25(12), 6683–6689 (2009).
[CrossRef] [PubMed]

2008 (2)

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
[CrossRef] [PubMed]

2007 (4)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
[CrossRef]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
[CrossRef] [PubMed]

2005 (2)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
[CrossRef] [PubMed]

A. Dixon, C. Duncan, and H. Samha, “Self assembly of cyanine dye on clay nanoparticles,” Am. J. Undergrad. Res.3, 29–34 (2005).

2003 (1)

B. D. Busbee, S. O. Obare, and C. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” J. Adv. Mater.15(5), 414–416 (2003).
[CrossRef]

2002 (1)

J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
[CrossRef] [PubMed]

2001 (2)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Camb.)0(7), 617–618 (2001).
[CrossRef]

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

1999 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

1998 (3)

P. J. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

1995 (1)

M. van Burgel, D. A. Wiersma, and K. Duppen, “The dynamics of one-dimensional excitons in liquids,” J. Chem. Phys.102(1), 20–33 (1995).
[CrossRef]

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman dyes on silver and gold sols,” J. Phys. Chem.86(17), 3391–3395 (1982).
[CrossRef]

Asami, K.

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Bower, C.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
[CrossRef] [PubMed]

Budde, A.

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

Busbee, B. D.

B. D. Busbee, S. O. Obare, and C. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” J. Adv. Mater.15(5), 414–416 (2003).
[CrossRef]

Caruso, F.

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

Chakraborty, P. J.

P. J. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

Davis, S.

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

DeLacy, B. G.

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Dimitrijevic, N. M.

J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
[CrossRef] [PubMed]

Dixon, A.

A. Dixon, C. Duncan, and H. Samha, “Self assembly of cyanine dye on clay nanoparticles,” Am. J. Undergrad. Res.3, 29–34 (2005).

Donath, E.

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

Duncan, C.

A. Dixon, C. Duncan, and H. Samha, “Self assembly of cyanine dye on clay nanoparticles,” Am. J. Undergrad. Res.3, 29–34 (2005).

Duppen, K.

M. van Burgel, D. A. Wiersma, and K. Duppen, “The dynamics of one-dimensional excitons in liquids,” J. Chem. Phys.102(1), 20–33 (1995).
[CrossRef]

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Fan, S.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98(4), 043101 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105(1), 013901 (2010).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Fujita, T.

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

Gearheart, L.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Camb.)0(7), 617–618 (2001).
[CrossRef]

Goebl, J.

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

Halas, N. J.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
[CrossRef] [PubMed]

Hamam, R. E.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
[CrossRef]

Harrison, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Hranisavljevic, J.

J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

Jana, N. R.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Camb.)0(7), 617–618 (2001).
[CrossRef]

Joannopoulos, J. D.

W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express20(16), 18494–18504 (2012).
[CrossRef] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
[CrossRef]

Johnson, S. G.

Kaiser, T. E.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl.50(15), 3376–3410 (2011).
[CrossRef] [PubMed]

Karalis, A.

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

Knippel, E.

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

Knippel, M.

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

Knoll, W.

Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
[CrossRef] [PubMed]

Kometani, N.

A. Yoshida, Y. Yonezawa, and N. Kometani, “Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling,” Langmuir25(12), 6683–6689 (2009).
[CrossRef] [PubMed]

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
[CrossRef] [PubMed]

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman dyes on silver and gold sols,” J. Phys. Chem.86(17), 3391–3395 (1982).
[CrossRef]

Li, N.

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

Lichtenfel, H.

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

Lichtenfeld, H.

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

Lu, Z.

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman dyes on silver and gold sols,” J. Phys. Chem.86(17), 3391–3395 (1982).
[CrossRef]

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Möhwald, H.

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

Murphy, C.

B. D. Busbee, S. O. Obare, and C. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” J. Adv. Mater.15(5), 414–416 (2003).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Camb.)0(7), 617–618 (2001).
[CrossRef]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

Nordlander, P.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
[CrossRef] [PubMed]

Obare, S. O.

B. D. Busbee, S. O. Obare, and C. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” J. Adv. Mater.15(5), 414–416 (2003).
[CrossRef]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Popov, V. I.

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

Qiu, W.

Ruan, Z.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98(4), 043101 (2011).
[CrossRef]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105(1), 013901 (2010).
[CrossRef] [PubMed]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010).
[CrossRef]

Saha-Möller, C. R.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl.50(15), 3376–3410 (2011).
[CrossRef] [PubMed]

Samha, H.

A. Dixon, C. Duncan, and H. Samha, “Self assembly of cyanine dye on clay nanoparticles,” Am. J. Undergrad. Res.3, 29–34 (2005).

Soljacic, M.

W. Qiu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optimization of broadband optical response of multilayer nanospheres,” Opt. Express20(16), 18494–18504 (2012).
[CrossRef] [PubMed]

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
[CrossRef]

Su, X.

Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
[CrossRef] [PubMed]

Sukhorukov, G. B.

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

Tsubonishi, M.

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

van Burgel, M.

M. van Burgel, D. A. Wiersma, and K. Duppen, “The dynamics of one-dimensional excitons in liquids,” J. Chem. Phys.102(1), 20–33 (1995).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
[CrossRef] [PubMed]

Wiederrecht, G. P.

J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
[CrossRef] [PubMed]

Wiersma, D. A.

M. van Burgel, D. A. Wiersma, and K. Duppen, “The dynamics of one-dimensional excitons in liquids,” J. Chem. Phys.102(1), 20–33 (1995).
[CrossRef]

Würthner, F.

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl.50(15), 3376–3410 (2011).
[CrossRef] [PubMed]

Wurtz, G. A.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
[CrossRef] [PubMed]

Xu, F.

Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
[CrossRef] [PubMed]

Yin, Y.

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

Yonezawa, Y.

A. Yoshida, Y. Yonezawa, and N. Kometani, “Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling,” Langmuir25(12), 6683–6689 (2009).
[CrossRef] [PubMed]

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

Yoshida, A.

A. Yoshida, Y. Yonezawa, and N. Kometani, “Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling,” Langmuir25(12), 6683–6689 (2009).
[CrossRef] [PubMed]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

Zong, Y.

Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res.40(1), 53–62 (2007).
[CrossRef] [PubMed]

Am. J. Undergrad. Res. (1)

A. Dixon, C. Duncan, and H. Samha, “Self assembly of cyanine dye on clay nanoparticles,” Am. J. Undergrad. Res.3, 29–34 (2005).

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem.337(2), 171–194 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

Y. Zong, F. Xu, X. Su, and W. Knoll, “Quartz crystal microbalance with integrated surface plasmon grating coupler,” Anal. Chem.80(13), 5246–5250 (2008).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem. Int. Ed. Engl.50(15), 3376–3410 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett.98(4), 043101 (2011).
[CrossRef]

Chem. Commun. (Camb.) (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Camb.)0(7), 617–618 (2001).
[CrossRef]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev.99(10), 2957–2976 (1999).
[CrossRef] [PubMed]

Coll. and Surf. A: Phys. and Eng. Aspects (1)

G. B. Sukhorukov, E. Donath, H. Lichtenfel, E. Knippel, M. Knippel, A. Budde, and H. Möhwald, “Layer-by-layer self assembly of polyelectrolytes on colloidal particles,” Coll. and Surf. A: Phys. and Eng. Aspects137(1-3), 253–266 (1998).
[CrossRef]

J. Adv. Mater. (1)

B. D. Busbee, S. O. Obare, and C. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” J. Adv. Mater.15(5), 414–416 (2003).
[CrossRef]

J. Am. Chem. Soc. (2)

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?” J. Am. Chem. Soc.133(46), 18931–18939 (2011).
[CrossRef] [PubMed]

J. Hranisavljevic, N. M. Dimitrijevic, G. A. Wurtz, and G. P. Wiederrecht, “Photoinduced charge separation reactions of j-aggregates coated on silver nanoparticles,” J. Am. Chem. Soc.124(17), 4536–4537 (2002).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

M. van Burgel, D. A. Wiersma, and K. Duppen, “The dynamics of one-dimensional excitons in liquids,” J. Chem. Phys.102(1), 20–33 (1995).
[CrossRef]

J. Mater. Sci. (1)

P. J. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman dyes on silver and gold sols,” J. Phys. Chem.86(17), 3391–3395 (1982).
[CrossRef]

J. Phys. Chem. C (2)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

Z. Ruan and S. Fan, “Temporal coupled-mode theory for fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C114(16), 7324–7329 (2010).
[CrossRef]

Langmuir (2)

A. Yoshida, Y. Yonezawa, and N. Kometani, “Tuning of the spectroscopic properties of composite nanoparticles by the insertion of a spacer layer: effect of exciton-plasmon coupling,” Langmuir25(12), 6683–6689 (2009).
[CrossRef] [PubMed]

N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, “Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal Na noparticles in aqueous solutions and in alternate assemblies,” Langmuir17(3), 578–580 (2001).
[CrossRef]

Nano Lett. (2)

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: Plasmon-exciton coupling in nanoshell-j-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, A. V. Zayats, W. Harrison, and C. Bower, “Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A75(5), 053801 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett.105(1), 013901 (2010).
[CrossRef] [PubMed]

Polym. Adv. Technol. (1)

G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Möhwald, “Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design,” Polym. Adv. Technol.9(10-11), 759–767 (1998).
[CrossRef]

Other (9)

H. C. van de Hulst, Light Scattering by Small Particles, (Dover, 1981).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (John Wiley & Sons,1983).

T. Kobayashi, J-Aggregates, (World Scientific Publishing Co. Pte. Ltd., 1996).

H. Kuhn and H. D. Foresterling, Principles of Physical Chemistry (Wiley, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

T. Tani, Photographic Sensitivity, (Oxford University, 1995).

A. S. Davydov, Theory of Molecular Excitons (Plenum, 1971).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, 1969).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (A) a double-shell structure composed of a silver metallic core, a spacer layer consisting of alternating layers PDADMAC/PSS polyelectrolytes, and a 1,1’-diethyl-2,2’-cyanine iodide (PIC) exterior shell. The outer radius and dielectric function of individual layers are (Ri, εi, i = 1,2,…, n). The dielectric function of the medium is εm. (B) The electrostatic adsorption of (PIC) J-aggregates onto a silver core/polyelectrolyte spacer. Na+, Cl-, and I- ions are not drawn for clarity. Figures are not drawn to scale.

Fig. 2
Fig. 2

(A) TEM image of silver nanoparticles fabricated using the citrate reduction method. (B) Experimental absorbance spectra of solutions containing 0.022 mg/mL silver sol (blue curve) and 0.023 mg/mL PIC (red curve). λmax = 442 nm for the silver sol. λmax = 523 nm for the PIC solution. (C) Zeta-potential as a function of layer number for silver particles coated with alternating layers of PDADMAC and PSS. Polyelectrolyte deposition of PDADMAC and PSS was performed in 0.01M NaCl.

Fig. 3
Fig. 3

Experimental absorbance spectra immediately following the sequential addition of PIC standard to a 3 mL colloidal suspension containing silver core-PDADMAC/PSS nanoparticles (0.013 mg/mL). 100 µL portions of a 0.23 mg/mL PIC standard solution were added to 3 mL of the suspension. The formation of the red-shifted J-aggregate peak was observed at 570 nm, 571 nm, and 571 nm upon addition of 100 µL, 200 µL, and 300 µL quantities of the PIC standard, respectively. For comparison, the absorbance spectra of the silver core/polyectrolyte nanoparticles and PIC standard (0.023 mg/mL) are provided.

Fig. 4
Fig. 4

(A) TEM image of silver/polyelectrolyte soaked in PIC for 24 hours. (B) Experimental absorbance spectra of PIC coated Ag core-polyelectrolyte shell nanoparticles, with varying polyelectrolyte layer thickness. 1 (PDADMAC/PSS) (blue curve), 2 (PDADMAC/PSS) (red curve), and 3 (PDADMAC/PSS) (green curve) correspond to 2, 4, and 6 alternating layers of PDADMAC and PSS, respectively. Formation of the red-shifted J-aggregate peak was observed at 581 nm, 581 nm, and 579 nm for the Ag/1(PDADMAC/PSS)/PIC,Ag/2(PDADMAC/PSS)/PIC, and Ag/3(PDADMAC/PSS)/PIC nanoparticles, respectively. (C) Simulated absorbance spectra for the impact of spacer layer thickness on the absorption wavelength of the J-aggregate peak. An oscillator strength (f) of 0.35 and a relaxation rate (γ) of 0.015 were assumed in the calculations.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ sca = σ l=1 λ 2 8π ( 2l+1 ) | 1 r σ,l | 2
σ sca = σ l=1 λ 2 8π ( 2l+1 ) | 1 r σ,l | 2 σ ext = σ sca + σ abs
[ A i+1 B i+1 ]= M i+1,i [ A i B i ]
[ A n+1 B n+1 ]= M n+1 , M n,n1 ... M 3,2 , M 2,1 [ A 1 B 1 ]=M[ A 1 B 1 ]
r 1 = B n+1 A n+1 = M 21 + M 22 M 11 + M 12
ε= ε 0 2Vcos( π N c +1 )
ε( ω )= ε 0 + f ω 0 2 ω 0 2 ω 2 i ω 0 γω

Metrics