Abstract

With the help of the most advanced algorithms we obtained many dozens of multilayer dispersive mirror designs to empirically find limits for the maximum achievable negative value of the group delay dispersion (GDD). This value depends on the total thickness of coatings and layer material combination. Nb2O5/SiO2 and Ta2O5/SiO2 combinations are studied in detail, for combinations HfO2/SiO2 and TiO2/SiO2 we obtained estimations for two bandwidths. We also show that reasonable values of third-order dispersion have no significant impact on the obtained results. Current state-of-the-art technology allows to produce designs with total physical thicknesses slightly higher than 10 µm and to achieve maximum negative GDD values corresponding to this total design thickness. Designs with total physical thickness of 15 µm and 20 µm are not realized yet due to high sensitivity to deposition errors.

©2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gires-Tournois interferometer type negative dispersion mirrors for deep ultraviolet pulse compression

Christopher A. Rivera, Stephen E. Bradforth, and Gabriel Tempea
Opt. Express 18(18) 18615-18624 (2010)

Measurements of the group delay and the group delay dispersion with resonance scanning interferometer

M. K. Trubetskov, M. von Pechmann, I. B. Angelov, K. L. Vodopyanov, F. Krausz, and V. Pervak
Opt. Express 21(6) 6658-6669 (2013)

Laser damage properties of broadband low-dispersion mirrors in sub-nanosecond laser pulse

Jinlong Zhang, Xiaoqing Bu, Hongfei Jiao, Bin Ma, Xinbin Cheng, and Zhangshan Wang
Opt. Express 25(1) 305-312 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [Crossref] [PubMed]
  2. V. Pervak, I. Ahmad, S. A. Trushin, Z. Major, A. Apolonski, S. Karsch, and F. Krausz, “Chirped-pulse amplification of laser pulses with dispersive mirrors,” Opt. Express 17(21), 19204–19212 (2009).
    [Crossref] [PubMed]
  3. P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
    [Crossref] [PubMed]
  4. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
    [Crossref] [PubMed]
  5. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
    [Crossref] [PubMed]
  6. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [Crossref] [PubMed]
  7. V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
    [Crossref] [PubMed]
  8. J. R. Birge, F. X. Kärtner, and O. Nohadani, “Improving thin-film manufacturing yield with robust optimization,” Appl. Opt. 50(9), C36–C40 (2011).
    [Crossref] [PubMed]
  9. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
    [Crossref] [PubMed]
  10. P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression with time-domain optimized chirped mirrors,” Opt. Express 13(26), 10888–10894 (2005).
    [Crossref] [PubMed]
  11. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
    [Crossref] [PubMed]
  12. O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, “Robust chirped mirrors,” Appl. Opt. 47(14), 2630–2636 (2008).
    [Crossref] [PubMed]
  13. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
    [Crossref] [PubMed]
  14. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B 18(6), 882–885 (2001).
    [Crossref]
  15. F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [Crossref]
  16. A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
    [Crossref] [PubMed]
  17. A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36(19), 4382–4392 (1997).
    [Crossref] [PubMed]
  18. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
    [Crossref]
  19. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
    [Crossref] [PubMed]
  20. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
    [Crossref]
  21. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
    [Crossref] [PubMed]
  22. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  23. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [Crossref] [PubMed]
  24. M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coatings design contest 2004,” Appl. Opt. 45(7), 1544–1554 (2006).
    [Crossref] [PubMed]
  25. M. Tilsch and K. Hendrix, “Optical Interference coatings design contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47(13), C55–C69 (2008).
    [Crossref] [PubMed]
  26. K. Hendrix and J. Oliver, “Optical interference coatings design contest 2010: solar absorber and Fabry-Perot etalon,” Appl. Opt. 50(9), C286–C300 (2011).
    [Crossref] [PubMed]
  27. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
    [Crossref]
  28. L. O. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen, L. Emmert, and W. Rudolph, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds., “Investigations on SiO2/HfO2 mixtures for nanosecond and femtosecond pulses,” in Proc. SPIE, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2010), pp. 784207.
  29. C.-C. Ting, S.-Y. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
    [Crossref]
  30. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
    [Crossref]
  31. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
    [Crossref] [PubMed]
  32. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
    [Crossref] [PubMed]

2012 (2)

2011 (6)

2009 (6)

2008 (3)

2007 (2)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

2006 (2)

2005 (2)

P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression with time-domain optimized chirped mirrors,” Opt. Express 13(26), 10888–10894 (2005).
[Crossref] [PubMed]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[Crossref]

2003 (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

2001 (1)

2000 (2)

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
[Crossref] [PubMed]

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

1997 (1)

1996 (1)

1994 (1)

Ahmad, I.

Alahmed, Z. A.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Amotchkina, T. V.

Angelov, I. B.

Angelow, G.

Apolonski, A.

Austin, R. R.

Azzeer, A. M.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Baumeister, P. W.

Bertsimas, D. J.

Birge, J. R.

Brons, J.

Chen, S.-Y.

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

DeBell, G.

DeBell, G. W.

Diddams, S. A.

Dombi, P.

Ell, R.

Ferencz, K.

Fuji, T.

Fujimoto, J. G.

Fulop, J.

Gagnon, J.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Golubovic, B.

Goulielmakis, E.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Grguras, I.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Grilli, M. L.

Hassan, M. T.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Hendrix, K.

Ippen, E. P.

Jin, P.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

Jones, D. J.

Kaneko, K.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

Karsch, S.

Kärtner, F. X.

Krausz, F.

V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
[Crossref] [PubMed]

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, S. A. Trushin, Z. Major, A. Apolonski, S. Karsch, and F. Krausz, “Chirped-pulse amplification of laser pulses with dispersive mirrors,” Opt. Express 17(21), 19204–19212 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[Crossref] [PubMed]

Lenner, M.

Lezius, M.

Liu, D.-M.

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[Crossref]

Luu, T. T.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Major, Z.

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[Crossref]

Miao, L.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

Morgner, U.

Moulet, A.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Nabatova-Gabain, N.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Nohadani, O.

O’Keeffe, K.

Oliver, J.

Pabst, S.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Pervak, V.

V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
[Crossref] [PubMed]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref] [PubMed]

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, S. A. Trushin, Z. Major, A. Apolonski, S. Karsch, and F. Krausz, “Chirped-pulse amplification of laser pulses with dispersive mirrors,” Opt. Express 17(21), 19204–19212 (2009).
[Crossref] [PubMed]

P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
[Crossref] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Popov, K. V.

Pronin, O.

Rácz, P.

Razskazovskaya, O.

Reed, M. K.

Ristau, D.

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[Crossref]

Santra, R.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Scheuer, V.

Schibli, T.

Spielmann, C.

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[Crossref]

Steiner-Shepard, M. K.

Steinmeyer, G.

Sugita, A.

Sytchkova, A. K.

Szipocs, R.

Tanemura, S.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

Teisset, C.

Tempea, G.

Terai, A.

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

Tikhonravov, A. V.

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[Crossref] [PubMed]

V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36(19), 4382–4392 (1997).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
[Crossref] [PubMed]

Tilsch, M.

Ting, C.-C.

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

Trubetskov, M. K.

V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[Crossref] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
[Crossref] [PubMed]

Trushin, S. A.

Tschudi, T.

Van Engen, A. G.

Verly, P.

Wirth, A.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Yakovlev, V. S.

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression with time-domain optimized chirped mirrors,” Opt. Express 13(26), 10888–10894 (2005).
[Crossref] [PubMed]

Appl. Opt. (12)

G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
[Crossref] [PubMed]

M. Tilsch, K. Hendrix, and P. Verly, “Optical interference coatings design contest 2004,” Appl. Opt. 45(7), 1544–1554 (2006).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

M. Tilsch and K. Hendrix, “Optical Interference coatings design contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47(13), C55–C69 (2008).
[Crossref] [PubMed]

O. Nohadani, J. R. Birge, F. X. Kärtner, and D. J. Bertsimas, “Robust chirped mirrors,” Appl. Opt. 47(14), 2630–2636 (2008).
[Crossref] [PubMed]

A. V. Tikhonravov, P. W. Baumeister, and K. V. Popov, “Phase properties of multilayers,” Appl. Opt. 36(19), 4382–4392 (1997).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
[Crossref] [PubMed]

J. R. Birge, F. X. Kärtner, and O. Nohadani, “Improving thin-film manufacturing yield with robust optimization,” Appl. Opt. 50(9), C36–C40 (2011).
[Crossref] [PubMed]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref] [PubMed]

K. Hendrix and J. Oliver, “Optical interference coatings design contest 2010: solar absorber and Fabry-Perot etalon,” Appl. Opt. 50(9), C286–C300 (2011).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[Crossref] [PubMed]

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Appl. Surf. Sci. (1)

S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, and N. Nabatova-Gabain, “Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 654–660 (2003).
[Crossref]

J. Appl. Phys. (1)

C.-C. Ting, S.-Y. Chen, and D.-M. Liu, “Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films,” J. Appl. Phys. 88(8), 4628–4633 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, “Pulse compression with time-domain optimized chirped mirrors,” Opt. Express 13(26), 10888–10894 (2005).
[Crossref] [PubMed]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
[Crossref] [PubMed]

V. Pervak, O. Pronin, O. Razskazovskaya, J. Brons, I. B. Angelov, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “High-dispersive mirrors for high power applications,” Opt. Express 20(4), 4503–4508 (2012).
[Crossref] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, S. A. Trushin, Z. Major, A. Apolonski, S. Karsch, and F. Krausz, “Chirped-pulse amplification of laser pulses with dispersive mirrors,” Opt. Express 17(21), 19204–19212 (2009).
[Crossref] [PubMed]

P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[Crossref]

Rev. Mod. Phys. (1)

F. Krausz, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[Crossref]

Science (1)

A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334(6053), 195–200 (2011).
[Crossref] [PubMed]

Other (2)

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
[Crossref]

L. O. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen, L. Emmert, and W. Rudolph, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds., “Investigations on SiO2/HfO2 mixtures for nanosecond and femtosecond pulses,” in Proc. SPIE, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, eds. (2010), pp. 784207.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Summarized main parameters of obtained designs with Nb2O5/SiO2 layer materials pair. Red, green and blue curves correspond to designs with the maximum physical thickness of 10 µm, 15 µm and 20 µm, respectively. Asterisks correspond to produced designs [5,11,32] with physical thicknesses shown in the legend.

Fig. 2
Fig. 2

Summarized main parameters of obtained designs with Ta2O5/SiO2 layer materials pair. Red, green and blue curves correspond to designs with the maximum physical thickness of 10 µm, 15 µm and 20 µm, respectively. Asterisks correspond to produced designs [2,3,6,7] with physical thicknesses shown in the legend.

Fig. 3
Fig. 3

Physical thicknesses of designs with different layer materials pairs (a) for 100 nm bandwidth (b) for 400 nm bandwidth: left bars correspond to TOD = 0 fs3 ((a) and (b)) and right bars correspond to TOD = 1000 fs3 (a) and to TOD = 150 fs3 (b).

Tables (2)

Tables Icon

Table 1 Cauchy formula coefficients for the substrate and layer materials

Tables Icon

Table 2 Summarized main parameters (the bandwidth, physical thickness, optical thickness, obtained value of GDD, number of layers) of designs with Nb2O5/SiO2 and Ta2O5/SiO2 layer materials pairs

Metrics