Abstract

We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (∼ 6 × 106 for 60 μm radius and ∼ 2 × 107 for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 106.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, 2004).
    [CrossRef]
  2. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInGs-silicon evanescent laser,” Opt. Express14,9203–9210 (2006).
    [CrossRef] [PubMed]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature (London)435,325–327 (2005).
    [CrossRef]
  5. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17,7901–7906 (2009).
    [CrossRef] [PubMed]
  6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15,11934–11941 (2007).
    [CrossRef] [PubMed]
  7. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
    [CrossRef]
  8. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13,1515–1530 (2005).
    [CrossRef] [PubMed]
  9. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15,4694–4704 (2007).
    [CrossRef] [PubMed]
  10. Q. Lin, O.J. Painter, and G.P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15,16604–16644 (2007).
    [CrossRef] [PubMed]
  11. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J.E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19,3163–3174 (2011).
    [CrossRef] [PubMed]
  12. M. C. Tien, J. F. Bauters, M. M. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express18,23562–23568 (2010).
    [CrossRef] [PubMed]
  13. G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express14, 8154–8159 (2006).
    [CrossRef] [PubMed]
  14. M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguide,” IEEE Photon. Technol. Lett.23,1166–1168 (2011).
    [CrossRef]
  15. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20, 22934–22942 (2012).
    [CrossRef] [PubMed]
  16. J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express21,544–555 (2013).
    [CrossRef] [PubMed]
  17. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12,1437–1442 (2004).
    [CrossRef] [PubMed]
  18. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17,14543–14551 (2009).
    [CrossRef] [PubMed]
  19. A. Gondarenko, J.S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17,11366–11370 (2009).
    [CrossRef] [PubMed]
  20. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19,14233–14239 (2011).
    [CrossRef] [PubMed]
  21. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
    [CrossRef] [PubMed]
  22. M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19, 13551–13556 (2011).
    [CrossRef] [PubMed]
  23. D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high Q ring resonators,” in Photonics Conference (Institute of Electrical and Electronics Engineers, Burlingame, CA, 2012), 141–142.
  24. F. H. P. M. Habraken, LPCVD Silicon Nitride and Oxynitride Films: Material and Applications in Integrated Circuit Technology (Springer, 1991).
    [CrossRef]
  25. H. A. Haus, Electromagnetic Fields and Energy (Prentice Hall, 1989).
  26. Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett.37,1586–1588 (2012).
    [CrossRef] [PubMed]
  27. Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24,1276–1278 (2012).
    [CrossRef]
  28. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express18,2127–2136 (2010).
    [CrossRef]
  29. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on-insulator platform,” Opt. Express17,2247–2254 (2009).
    [CrossRef] [PubMed]
  30. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19,12356–12364 (2011).
    [CrossRef] [PubMed]
  31. C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B25, 2658–2661 (2007).
    [CrossRef]

2013

2012

2011

2010

2009

2007

2006

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature (London)435,325–327 (2005).
[CrossRef]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13,1515–1530 (2005).
[CrossRef] [PubMed]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12,1437–1442 (2004).
[CrossRef] [PubMed]

Adibi, A.

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, “Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators,” Opt. Lett.37,1586–1588 (2012).
[CrossRef] [PubMed]

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24,1276–1278 (2012).
[CrossRef]

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19,12356–12364 (2011).
[CrossRef] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express18,2127–2136 (2010).
[CrossRef]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on-insulator platform,” Opt. Express17,2247–2254 (2009).
[CrossRef] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17,14543–14551 (2009).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15,4694–4704 (2007).
[CrossRef] [PubMed]

Agrawal, G.P.

Alipour, P.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24,1276–1278 (2012).
[CrossRef]

Atabaki, A. H.

Baets, R.

Barton, J. S.

Barwicz, T.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B25, 2658–2661 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12,1437–1442 (2004).
[CrossRef] [PubMed]

Bauters, J. F.

Blumenthal, D. J.

Borselli, M.

Bowers, J. E.

Bowers, J.E.

Bruinink, C. M.

Chamanzar, M.

Chen, A.

Chen, L.

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInGs-silicon evanescent laser,” Opt. Express14,9203–9210 (2006).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Dai, D.

Davenport, M. L.

Doylend, J. K.

Eftekhar, A. A.

Fang, A. W.

Foster, M. A.

Gaeta, A. L.

Ghulinyan, M.

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20, 22934–22942 (2012).
[CrossRef] [PubMed]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguide,” IEEE Photon. Technol. Lett.23,1166–1168 (2011).
[CrossRef]

Gondarenko, A.

Guider, R.

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguide,” IEEE Photon. Technol. Lett.23,1166–1168 (2011).
[CrossRef]

Habraken, F. H. P. M.

F. H. P. M. Habraken, LPCVD Silicon Nitride and Oxynitride Films: Material and Applications in Integrated Circuit Technology (Springer, 1991).
[CrossRef]

Haus, H. A.

Heck, M. J. R.

Heck, M. M. R.

Heideman, R. G.

Holzwarth, C. W.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B25, 2658–2661 (2007).
[CrossRef]

Hosseini, E. S.

Ippen, E. P.

John, D.

John, D. D.

Johnson, T.

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInGs-silicon evanescent laser,” Opt. Express14,9203–9210 (2006).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, 2004).
[CrossRef]

Kuzucu, O.

Leinse, A.

Levy, J. S.

Levy, J.S.

Li, Q.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Momeni, B.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Notzel, R.

Painter, O.

Painter, O.J.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Paniccia, M. J.

Park, H.

Pavesi, L.

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20, 22934–22942 (2012).
[CrossRef] [PubMed]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguide,” IEEE Photon. Technol. Lett.23,1166–1168 (2011).
[CrossRef]

Popovic, M. A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature (London)435,325–327 (2005).
[CrossRef]

Prtljaga, N.

Pucker, G.

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20, 22934–22942 (2012).
[CrossRef] [PubMed]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguide,” IEEE Photon. Technol. Lett.23,1166–1168 (2011).
[CrossRef]

Rakich, P. T.

Ramiro-Manzano, F.

Reed, G. T.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, 2004).
[CrossRef]

Roelkens, G.

Rooks, M.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Saha, K.

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature (London)435,325–327 (2005).
[CrossRef]

Sekaric, L.

Smit, M.

Smith, H. I.

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B25, 2658–2661 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12,1437–1442 (2004).
[CrossRef] [PubMed]

Soltani, M.

Spencer, D. T.

M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19, 13551–13556 (2011).
[CrossRef] [PubMed]

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high Q ring resonators,” in Photonics Conference (Institute of Electrical and Electronics Engineers, Burlingame, CA, 2012), 141–142.

Tang, Y.

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high Q ring resonators,” in Photonics Conference (Institute of Electrical and Electronics Engineers, Burlingame, CA, 2012), 141–142.

Tien, M. C.

Van Thourhout, D.

Vlasov, Y.

Watts, M. R.

Xia, F.

Xia, Z.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature (London)435,325–327 (2005).
[CrossRef]

Yegnanarayanan, S.

IEEE Photon. Technol. Lett.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24,1276–1278 (2012).
[CrossRef]

M. Ghulinyan, R. Guider, G. Pucker, and L. Pavesi, “Monolithic whispering-gallery mode resonators with vertically coupled integrated bus waveguide,” IEEE Photon. Technol. Lett.23,1166–1168 (2011).
[CrossRef]

J. Vac. Sci. Technol. B

C. W. Holzwarth, T. Barwicz, and H. I. Smith, “Optimization of hydrogen silsesquioxane for photonic applications,” J. Vac. Sci. Technol. B25, 2658–2661 (2007).
[CrossRef]

Nature (London)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature (London)427,615–618 (2004).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature (London)435,325–327 (2005).
[CrossRef]

Nature Photon.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon.1, 65–71 (2007).
[CrossRef]

Opt. Express

F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20, 22934–22942 (2012).
[CrossRef] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. R. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express21,544–555 (2013).
[CrossRef] [PubMed]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12,1437–1442 (2004).
[CrossRef] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13,1515–1530 (2005).
[CrossRef] [PubMed]

G. Roelkens, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit,” Opt. Express14, 8154–8159 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInGs-silicon evanescent laser,” Opt. Express14,9203–9210 (2006).
[CrossRef] [PubMed]

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15,4694–4704 (2007).
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15,11934–11941 (2007).
[CrossRef] [PubMed]

Q. Lin, O.J. Painter, and G.P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15,16604–16644 (2007).
[CrossRef] [PubMed]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on-insulator platform,” Opt. Express17,2247–2254 (2009).
[CrossRef] [PubMed]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17,7901–7906 (2009).
[CrossRef] [PubMed]

A. Gondarenko, J.S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17,11366–11370 (2009).
[CrossRef] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17,14543–14551 (2009).
[CrossRef] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express18,2127–2136 (2010).
[CrossRef]

M. C. Tien, J. F. Bauters, M. M. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express18,23562–23568 (2010).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J.E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19,3163–3174 (2011).
[CrossRef] [PubMed]

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19,12356–12364 (2011).
[CrossRef] [PubMed]

M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19, 13551–13556 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19,14233–14239 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Other

D. T. Spencer, Y. Tang, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated Si3N4/SiO2 ultra high Q ring resonators,” in Photonics Conference (Institute of Electrical and Electronics Engineers, Burlingame, CA, 2012), 141–142.

F. H. P. M. Habraken, LPCVD Silicon Nitride and Oxynitride Films: Material and Applications in Integrated Circuit Technology (Springer, 1991).
[CrossRef]

H. A. Haus, Electromagnetic Fields and Energy (Prentice Hall, 1989).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) SEM of the cross section of a SiN waveguide structure with a width of 1.2 μm and a height of 400 nm. (b) Optical micrograph of a 60-μm-radius SiN microring with a width of 8 μm.

Fig. 2
Fig. 2

(a) Transmission measurements for a 60-μm-radius microring resonator fabricated with a 400-nm-thick SiN layer on the SiO2 substrate: the blue curve is before annealing and the red curve is after annealing (intentionally moved down by 15 dB for a better comparison). (b) Zoom-in figures for the resonance marked in (a): the upper figure is before annealing and the lower figure is after annealing.

Fig. 3
Fig. 3

Measured (circles) intrinsic Qs of the fundamental radial mode from independently fabricated SiN microrings with different radii (the width of the microrings is kept the same as 8 μm). The dotted black line is the statistical average.

Fig. 4
Fig. 4

Transmission spectrum of a 240-μm-radius SiN microring on SiO2 with a width of 8 μm and SiN thickness of 400 nm. Different radial mode families are labeled by their radial mode orders, and the insets depict the lineshapes of the marked resonances.

Fig. 5
Fig. 5

Illustration of the vertical integration of SiN into the SOI platform: SiO2 is the buffer between these two layers.

Fig. 6
Fig. 6

(a) Schematic of the pulley coupling scheme. In the actual structure, the access waveguide is in the Si layer which is vertically separated from the SiN resonator by an oxide layer. (b) The radial cross section (r-z plane) of the SiN-Si vertically coupled structure. The mode profiles of the first four radial modes of a 240-μm-radius SiN microresonator (width 8 μm) and the Si waveguide are provided. (c) Computed κ as a function of the Si waveguide position for a fixed SiO2 thickness of 500 nm for the first four radial-order modes of the SiN resonator. The inset shows a zoom-in view of κ for Δr in the range of 200 – 400 nm.

Fig. 7
Fig. 7

(a) SEM showing the cross section of the Si waveguide (400 nm × 100 nm) after the coating of FOx (∼ 550 nm). The remaining HSQ is about 70 nm after Si etching. (2) SEM showing the cross section of the Si waveguide (400 nm × 80 nm) after the FOx (∼ 750 nm) annealing and the SiN deposition. (c) Optical micrograph of a 60-μm-radius SiN microresonator coupled to an underneath Si waveguide. The right figure shows a zoom-in view of the coupling region.

Fig. 8
Fig. 8

(a) Illustration of the characterization process for the SiN-on-SOI samples: light is coupled from a tunable laser into the Si waveguide input and then collected at the Si waveguide output before sent to the detector. The top image is captured by an infrared camera when the SiN microresonator is at resonance. (b) Transmission spectrum measurement for a 60-μm-radius SiN microring fabricated on top of SOI, showing an intrinsic Q around 2 million. The optical micrograph of the coupled structure is shown in Fig. 7(c): the Si waveguide’s dimensions are 450 nm × 110 nm, Δr ≈ −2000 nm, L ≈ 10 μm, and oxide thickness ≈ 700 nm.

Fig. 9
Fig. 9

Measured and normalized FSRs for three different radial modes from the transmission spectrum plotted in Fig. 4: 2nd (square), 3rd (cross) and 4th (triangle). The dotted lines are the corresponding simulation results.

Fig. 10
Fig. 10

(a) Transmission spectrum measured for a 240-μm-radius SiN-on-SiO2 microresonator using the continuous mode of the tunable laser (500 pm/s, 80k sample/s sampling rate). The inset shows the lineshape of a resonance around 1568.6 nm. (b) Transmission spectrum measured for the same resonance shown in (a) using the wavelength locking mode of the tunable laser. The applied voltage to the laser is a triangle wave with a frequency of 1 kHz. It is generated by the DAQ board and sampled at 100k sample/s. The blue and red curves depict the forward and backward scans, respectively; the dotted black line is the ideal FP response assuming a linear scan; and the inset shows the lineshape of the resonance around 1568.6 nm from the forward scan.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q ω U c P loss ,
t n , m = i ω ε 0 4 δ V WG ( n Si 2 n SiO 2 2 ) E n , m * ( r ) E WG ( r ) d 3 r ,
t n , m = i κ n L sinc ( δ β n , m L 2 ) ,
κ n ω ε 0 4 δ S WG ( n Si 2 n SiO 2 2 ) E n * ( r , z ) E WG ( r , z ) d r d z ,

Metrics