Abstract

We have investigated the suitability of the ellipsoidal model particles to mimic scattering by Martian dust particles by comparing simulations against laboratory data for palagonite, a Mars analog sample. By optimizing the shape distribution of ellipsoids, a very good match with a laboratory-measured scattering matrix was obtained. Even an equiprobable distribution of ellipsoids performed well. The asymmetry parameter and single-scattering albedo were found to depend on the assumed shape distribution as much as on the typical uncertainties associated with refractive indices and size, suggesting that shape is an important parameter that potentially influences remote retrievals of dust particle properties.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
    [CrossRef]
  2. O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
    [CrossRef]
  3. M. D. Smith, “Spacecraft observations of the Martian atmosphere,” Annu. Rev. Earth Planet. Sci.36, 191–219 (2008).
    [CrossRef]
  4. M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
    [CrossRef]
  5. H. C. van de Hulst, Light Scattering by Small Particles, 2nd ed. (Dover Publications Inc., 1981).
  6. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610 (1974).
    [CrossRef]
  7. E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
    [CrossRef]
  8. O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
    [CrossRef]
  9. Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
    [CrossRef]
  10. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
    [CrossRef]
  11. S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
    [CrossRef]
  12. I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to Modern Approach(Springer, 2012).
  13. M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
    [CrossRef]
  14. M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
    [CrossRef]
  15. F. M. Kahnert, J. J. Stamnes, and K. Stamnes, “Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?” J. Opt. Soc. Am. A19, 521–531 (2002).
    [CrossRef]
  16. T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer101, 471–487 (2006).
    [CrossRef]
  17. T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
    [CrossRef]
  18. T. Nousiainen, “Impact of particle shape on refractive-index dependence of scattering in resonance domain,” J. Quant. Spectrosc. Radiat. Transfer108, 464–473 (2007).
    [CrossRef]
  19. T. Nousiainen, K. Muinonen, and P. Räisänen, “Scattering of light by large Saharan dust particles in a modified ray optics approximation,” J. Geophys. Res.108, 4025 (2003).
    [CrossRef]

2012

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

2011

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
[CrossRef]

2010

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

2009

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
[CrossRef]

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

2008

M. D. Smith, “Spacecraft observations of the Martian atmosphere,” Annu. Rev. Earth Planet. Sci.36, 191–219 (2008).
[CrossRef]

2007

T. Nousiainen, “Impact of particle shape on refractive-index dependence of scattering in resonance domain,” J. Quant. Spectrosc. Radiat. Transfer108, 464–473 (2007).
[CrossRef]

2006

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer101, 471–487 (2006).
[CrossRef]

2005

O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
[CrossRef]

2003

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

T. Nousiainen, K. Muinonen, and P. Räisänen, “Scattering of light by large Saharan dust particles in a modified ray optics approximation,” J. Geophys. Res.108, 4025 (2003).
[CrossRef]

2002

1974

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610 (1974).
[CrossRef]

Abraham, A.

I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to Modern Approach(Springer, 2012).

Arvidson, R.

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

Bandfield, D.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Bandfield, J. L.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Bell, J. F.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Bi, L.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
[CrossRef]

Cantor, B. A.

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

Christensen, P. R.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Clancy, R. T.

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Dabrowska, D. D.

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

Dlugach, Zh. M.

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Ghosh, A.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Goguen, J. D.

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

Hansen, J. E.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610 (1974).
[CrossRef]

Hovenier, J. W.

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

Kahn, R.

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
[CrossRef]

Kahnert, F. M.

Kahnert, M.

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer101, 471–487 (2006).
[CrossRef]

Kahre, M.

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

Kattawar, G. W.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
[CrossRef]

Korablev, O.

O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
[CrossRef]

Korablev, O. I.

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Kupiainen, K.

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

Laan, E. C.

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

Landis, G.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Laszlo, I.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

Lehtinen, M.

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

Lemmon, J. L.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Lemmon, M. T.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Lindqvist, H.

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
[CrossRef]

Liou, K. N.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

Malin, M. C.

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

Meng, Z.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

Merikallio, S.

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
[CrossRef]

Moreno, O.

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

Moroz, V. I.

O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
[CrossRef]

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Morozhenko, A. V.

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Muinonen, K.

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

T. Nousiainen, K. Muinonen, and P. Räisänen, “Scattering of light by large Saharan dust particles in a modified ray optics approximation,” J. Geophys. Res.108, 4025 (2003).
[CrossRef]

Muñoz, O.

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

Murchie, S.

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

Niemi, J. V.

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

Nousiainen, T.

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
[CrossRef]

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

T. Nousiainen, “Impact of particle shape on refractive-index dependence of scattering in resonance domain,” J. Quant. Spectrosc. Radiat. Transfer108, 464–473 (2007).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer101, 471–487 (2006).
[CrossRef]

T. Nousiainen, K. Muinonen, and P. Räisänen, “Scattering of light by large Saharan dust particles in a modified ray optics approximation,” J. Geophys. Res.108, 4025 (2003).
[CrossRef]

Petrova, E. V.

O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
[CrossRef]

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Räisänen, P.

T. Nousiainen, K. Muinonen, and P. Räisänen, “Scattering of light by large Saharan dust particles in a modified ray optics approximation,” J. Geophys. Res.108, 4025 (2003).
[CrossRef]

Rodin, A. V.

O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
[CrossRef]

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Roush, T. L.

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

Savijärvi, H.

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

Seelos, F.

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

Smith, M. D.

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

M. D. Smith, “Spacecraft observations of the Martian atmosphere,” Annu. Rev. Earth Planet. Sci.36, 191–219 (2008).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Snasel, V.

I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to Modern Approach(Springer, 2012).

Spanovich, N.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Squyres, S. W.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Stam, D. M.

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

Stamnes, J. J.

Stamnes, K.

Travis, L. D.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610 (1974).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles, 2nd ed. (Dover Publications Inc., 1981).

Veihelmann, B.

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer101, 471–487 (2006).
[CrossRef]

Videen, G.

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

Volten, H.

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

Whitney, B. A.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Wolff, M. J.

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

Yang, P.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
[CrossRef]

Zelinka, I.

I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to Modern Approach(Springer, 2012).

Zubko, E.

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

Adv. Space Res.

O. Korablev, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Optical properties of dust and the opacity of the Martian atmosphere,” Adv. Space Res.35(1), 21–30 (2005).
[CrossRef]

Annu. Rev. Earth Planet. Sci.

M. D. Smith, “Spacecraft observations of the Martian atmosphere,” Annu. Rev. Earth Planet. Sci.36, 191–219 (2008).
[CrossRef]

Appl. Optics

L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the rayleigh to geometric-optics regimes,” Appl. Optics48(1), 114–126 (2009).
[CrossRef]

Atmos. Chem. Phys.

S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modelling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys.11(11), 5347–5363 (2011).
[CrossRef]

Icarus

M. J. Wolff, R. T. Clancy, J. D. Goguen, M. C. Malin, and B. A. Cantor, “Ultraviolet dust aerosol properties as observed by Marci,” Icarus208, 143–155 (2010).
[CrossRef]

E. C. Laan, H. Volten, D. M. Stam, O. Muñoz, J. W. Hovenier, and T. L. Roush, “Scattering matrices and expansion coefficients of Martian analogue palagonite particles,” Icarus199, 219–230 (2009).
[CrossRef]

J. Aerosol Sci.

Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” J. Aerosol Sci.41, 501–512 (2010).
[CrossRef]

J. Geophys. Res.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney, M. T. Lemmon, J. L. Lemmon, J. L. Bandfield, D. Bandfield, A. Ghosh, G. Landis, P. R. Christensen, J. F. Bell, and S. W. Squyres, “Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES,” J. Geophys. Res.111, E12S17 (2006).
[CrossRef]

M. J. Wolff, M. D. Smith, R. T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, and H. Savijärvi, “Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer,” J. Geophys. Res.114, E2 (2009).
[CrossRef]

T. Nousiainen, E. Zubko, J. V. Niemi, K. Kupiainen, M. Lehtinen, K. Muinonen, and G. Videen, “Single-scattering modeling of thin, birefringent mineral dust flakes using the discrete-dipole approximation,” J. Geophys. Res.114, D07207 (2009).
[CrossRef]

T. Nousiainen, K. Muinonen, and P. Räisänen, “Scattering of light by large Saharan dust particles in a modified ray optics approximation,” J. Geophys. Res.108, 4025 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Quant. Spectrosc. Radiat. Transfer

T. Nousiainen, “Impact of particle shape on refractive-index dependence of scattering in resonance domain,” J. Quant. Spectrosc. Radiat. Transfer108, 464–473 (2007).
[CrossRef]

T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids,” J. Quant. Spectrosc. Radiat. Transfer101, 471–487 (2006).
[CrossRef]

O. Muñoz, O. Moreno, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam-Granada light scattering database,” J. Quant. Spectrosc. Radiat. Transfer113, 565–574 (2012).
[CrossRef]

Solar Sys. Res.

Zh. M. Dlugach, O. I. Korablev, A. V. Morozhenko, V. I. Moroz, E. V. Petrova, and A. V. Rodin, “Physical properties of dust in the Martian atmosphere: Analysis of contradictions and possible ways of their resolution,” Solar Sys. Res.37, 1–19 (2003).
[CrossRef]

Space Sci. Rev.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev.16, 527–610 (1974).
[CrossRef]

Other

H. C. van de Hulst, Light Scattering by Small Particles, 2nd ed. (Dover Publications Inc., 1981).

I. Zelinka, V. Snasel, and A. Abraham, Handbook of Optimization: From Classical to Modern Approach(Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Palagonite sample particles imaged with a Scanning Electron Microscope (SEM), courtesy of Olga Munõz.

Fig. 2
Fig. 2

Comparison of measured (red error bars) and modeled scattering matrix elements for the best-fit shape distribution (black line) as well as individual ellipsoids (turquoise lines, with an exception of the Mie-shape being plotted in blue). The shapes that are represented with more than one percent in the best-fit shape distribution are marked with thicker and dashed turquoise line. The only obvious room for improvement of the fitting resides in the tail of P22 and P44, and in the forward scattering angles of the phase matrix P11.

Fig. 3
Fig. 3

Shape distribution weights that optimally reproduce the scattering matrix element in question (black balls) and for optimally fitting the whole matrix (red crosses), as a function of the axis ratios of the two largest axis, ce and be, to the shortest axis, ae. The size of the marker is directly proportional to the weight of the corresponding shape. Oblate spheroids are found on the diagonal whilst the prolate spheroids reside on the x-axis.

Fig. 4
Fig. 4

Same as Fig. 2, but for the model (black line) that has been acquired by fitting all matrix elements simultaneously. The corresponding best fit obtained using only spheroids have been added for comparison (dashed orange line).

Fig. 5
Fig. 5

The fits acquired by the equiprobable distribution. The symbols and colors are the same as in Fig. 4.

Fig. 6
Fig. 6

The asymmetry parameters obtained with various shape and size distributions, refractive indices and at different wavelengths λ. The different shape distributions are shown on the x-axis, the middle three denoting different cases employing all 34 ellipsoids considered. Different wavelengths are denoted with different colors: 320 nm (blue), 500 nm (black), and 1000 nm (red). The boxes show results for different size distributions (left) and imaginary parts of the refractive index (right) so that the top of the box corresponds to the highest, and the bottom to the lowest value used, the midline presenting the value for the default case: for reff this is 1.6 μm while for Im(m) it is wavelength-dependent and taken from Table 1.

Fig. 7
Fig. 7

The single-scattering albedo compared for various shape distributions, size distributions and refractive indices. The color coding for the boxes is the same as in Fig. 6 and the same legend can be applied. As in Fig. 6, the effects of variations of Δreff = ±0.2 μm and ΔIm(m) = ±0.2 are shown in colors towards the increasing value - note that here an increase in reff or Im(m) results in a decrease in ω.

Tables (1)

Tables Icon

Table 1 Assumed complex refractive index, m, for Martian dust at the three wavelengths considered.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P ( θ ) = ( P 11 ( θ ) P 12 ( θ ) 0 0 P 12 ( θ ) P 22 ( θ ) 0 0 0 0 P 33 ( θ ) P 34 ( θ ) 0 0 P 34 ( θ ) P 44 ( θ ) ) ,
1 2 0 π sin ( θ ) P 11 d θ = 1 .
g = 0 π P 11 cos ( θ ) sin ( θ ) d θ .
C ext = C sca + C abs .
ω = C sca C ext = C sca C sca + C abs ,
C x x = i η i r n r C x x ( i , r ) ,
g = i η i r n r C sca ( r , i ) g ( r , i ) i η i r n r C sca ( r , i ) .
r eff = r r π r 2 n ( r ) r π r 2 n ( r ) ,
ν eff = r ( r r eff ) 2 π r 2 n ( r ) r eff 2 r π r 2 n ( r )
E = θ ρ θ / π [ S ( θ ) O ( θ ) ] 2 / σ θ 2 ,
x 2 / a e 2 + y 2 / b e 2 + z 2 / c e 2 = 1 ,
P ( θ ) = i η i r n r C sca ( r , i ) P ( θ , r , i ) i η i r n r C sca ( r , i ) ,
n ( r ) = c r 1 3 ν eff ν eff e r r eff ν eff .
ξ = { ε 1 ε > 1 ( oblate , b < a ) 1 1 / ε ε < 1 ( prolate , b > a ) 0 ε = 1 ( sphere , b = a )
ξ e = ( 1 b e / c e ) 2 + ( 1 a e / b e ) 2 ,

Metrics