Abstract

We present a direct-method solution toward the general problem of plasmonic wavefront manipulation and shaping to realize pre-designated functionalities based on the surface-wave holography (SWH) method. We demonstrate theoretically and experimentally the design and fabrication of holographic plasmonic lenses over surface plasmons with complex wavefront profiles. We show that visible light at 632.8 nm transmitting through a high-aspect-ratio slit or a micro-rectangle hole in a silver film can be focused to a preset three-dimensional point spot in free space via appropriately manipulating the interaction of excited surface plasmons with the nanoscale groove pattern of the holographic lens. The experiment results of scanning near-field optical microscopy for measuring the three-dimensional optical field distribution agree well both with designs and with numerical simulations, and this strongly supports the effectiveness and efficiency of the SWH method in the design of plasmonic devices that can fulfill manipulation and transformation of complicated-profile surface plasmons.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, “Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tr. Mod. Phys.111, 1–133 (1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  7. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  8. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
    [CrossRef] [PubMed]
  9. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
    [CrossRef]
  10. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
    [CrossRef]
  11. N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
    [CrossRef]
  12. N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
    [CrossRef]
  13. J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
    [CrossRef]
  14. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
    [CrossRef] [PubMed]
  15. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
    [CrossRef] [PubMed]
  16. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
    [CrossRef] [PubMed]
  17. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
    [CrossRef] [PubMed]
  18. S. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express19(10), 9269–9281 (2011).
    [CrossRef] [PubMed]
  19. Y. H. Chen, J. X. Fu, and Z. Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express19(24), 23908–23920 (2011).
    [CrossRef] [PubMed]
  20. Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  22. J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
    [CrossRef]
  23. M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
    [CrossRef]
  24. Y. M. Wu, L. W. Li, and B. Liu, “Gold Bow-Tie Shaped Aperture Nanoantenna: Wide Band Near-field Resonance and Far-Field Radiation,” IEEE Trans. Magn.46(6), 1918–1921 (2010).
    [CrossRef]
  25. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109(20), 203903 (2012).
    [CrossRef] [PubMed]
  26. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
    [CrossRef] [PubMed]

2012 (3)

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
[CrossRef]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109(20), 203903 (2012).
[CrossRef] [PubMed]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
[CrossRef] [PubMed]

2011 (4)

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

S. Thongrattanasiri, D. C. Adams, D. Wasserman, and V. A. Podolskiy, “Multiscale beam evolution and shaping in corrugated plasmonic systems,” Opt. Express19(10), 9269–9281 (2011).
[CrossRef] [PubMed]

Y. H. Chen, J. X. Fu, and Z. Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express19(24), 23908–23920 (2011).
[CrossRef] [PubMed]

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

2010 (4)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

Y. M. Wu, L. W. Li, and B. Liu, “Gold Bow-Tie Shaped Aperture Nanoantenna: Wide Band Near-field Resonance and Far-Field Radiation,” IEEE Trans. Magn.46(6), 1918–1921 (2010).
[CrossRef]

2009 (2)

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

2007 (3)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1988 (1)

H. Raether, “Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tr. Mod. Phys.111, 1–133 (1988).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Adams, D. C.

Arie, A.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109(20), 203903 (2012).
[CrossRef] [PubMed]

Balram, K. C.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Blanchard, R.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Capasso, F.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
[CrossRef] [PubMed]

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Chen, Y. H.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
[CrossRef]

Y. H. Chen, J. X. Fu, and Z. Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express19(24), 23908–23920 (2011).
[CrossRef] [PubMed]

Chen, Y.-H.

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Cheng, B. Y.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Diehl, L.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Dolev, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109(20), 203903 (2012).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Edamura, T.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Epstein, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109(20), 203903 (2012).
[CrossRef] [PubMed]

Fan, J.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Fan, S. H.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Fu, J. X.

Fu, J.-X.

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Furuta, S.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

Gan, L.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Genevet, P.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
[CrossRef] [PubMed]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Hua, Y.-L.

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Huang, L.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
[CrossRef]

Jin, A. Z.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kan, H.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Kang, J. H.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

Kats, M. A.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
[CrossRef] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Lee, J. W.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Li, J.-F.

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Li, L. W.

Y. M. Wu, L. W. Li, and B. Liu, “Gold Bow-Tie Shaped Aperture Nanoantenna: Wide Band Near-field Resonance and Far-Field Radiation,” IEEE Trans. Magn.46(6), 1918–1921 (2010).
[CrossRef]

Li, Z. Y.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
[CrossRef]

Y. H. Chen, J. X. Fu, and Z. Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express19(24), 23908–23920 (2011).
[CrossRef] [PubMed]

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Li, Z.-Y.

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

Lin, J.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
[CrossRef] [PubMed]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Liu, B.

Y. M. Wu, L. W. Li, and B. Liu, “Gold Bow-Tie Shaped Aperture Nanoantenna: Wide Band Near-field Resonance and Far-Field Radiation,” IEEE Trans. Magn.46(6), 1918–1921 (2010).
[CrossRef]

Liu, R. J.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Liu, R.-J.

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

Ly-Gagnon, D. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Miller, D. A. B.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Park, Q. H.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

Pflugl, C.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Podolskiy, V. A.

Raether, H.

H. Raether, “Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tr. Mod. Phys.111, 1–133 (1988).

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

Seo, M. A.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

Sun, M.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Tanemura, T.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

Thongrattanasiri, S.

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Wahl, P.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

Wang, Q. J.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Wasserman, D.

White, J. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Wu, Y. M.

Y. M. Wu, L. W. Li, and B. Liu, “Gold Bow-Tie Shaped Aperture Nanoantenna: Wide Band Near-field Resonance and Far-Field Radiation,” IEEE Trans. Magn.46(6), 1918–1921 (2010).
[CrossRef]

Yamanishi, M.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Yang, H. F.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Yu, N. F.

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Yu, Z. F.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

Zhang, D. Z.

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett.90(5), 051113 (2007).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett.94(8), 081102 (2009).
[CrossRef]

Chin. Phys. B (1)

J.-X. Fu, Y.-L. Hua, Y.-H. Chen, R.-J. Liu, J.-F. Li, and Z.-Y. Li, “Systematic study on visible light collimation by nanostructured slits in the metal surface,” Chin. Phys. B20(3), 037806 (2011).
[CrossRef]

IEEE Trans. Magn. (1)

Y. M. Wu, L. W. Li, and B. Liu, “Gold Bow-Tie Shaped Aperture Nanoantenna: Wide Band Near-field Resonance and Far-Field Radiation,” IEEE Trans. Magn.46(6), 1918–1921 (2010).
[CrossRef]

IEEE Trans. NanoTechnol. (1)

N. F. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for Laser Beam Shaping,” IEEE Trans. NanoTechnol.9(1), 11–29 (2010).
[CrossRef]

Light: Sci. Appl. (1)

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light: Sci. Appl.1(8), e26 (2012).
[CrossRef]

Nano Lett. (3)

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett.9(1), 235–238 (2009).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic Lenses Formed by Two-Dimensional Nanometric Cross-Shaped Aperture Arrays for Fresnel-Region Focusing,” Nano Lett.10(5), 1936–1940 (2010).
[CrossRef] [PubMed]

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett.11(7), 2693–2698 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat Commun3, 1278 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics2(9), 564–570 (2008).
[CrossRef]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Lett. A (1)

M. Sun, R. J. Liu, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, H. F. Yang, and A. Z. Jin, “Enhanced near-infrared transmission through periodic H-shaped arrays,” Phys. Lett. A365(5-6), 510–513 (2007).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109(20), 203903 (2012).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Springer Tr. Mod. Phys. (1)

H. Raether, “Surface-Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tr. Mod. Phys.111, 1–133 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The three steps of the surface-wave-holography method. (a) The wavefront of the objective wave U0. Place a point source with x polarization at (0, 0, 7) μm, calculate its propagation and store the field distribution at z = 0 μm as U0. (b) The wavefront of the reference wave Ur. An x-polarized incident light is shined to an aperture in a 240-nm-thick silver film. The field distribution immediately above the surface of the silver film is stored as Ur. (c) The designed sample. Grooves are fabricated at positions where the phase of U0Ur equals 2mπ.

Fig. 2
Fig. 2

(a) The SEM photo of the slit sample. The measured size of the slit is 11.10 × 0.15 μm2 (the value in design is 11 × 0.12 μm2). The measured x scale of the structure is 12.18 ± 0.02 μm, and the y scale is 12.14 ± 0.02 μm (both are 12 μm in design). Shown in the bottom is a scale bar of 2 μm. (b) The simulated field distribution of the surface waves excited by an 11 × 0.12 μm slit.Note that the silver surface in (b) is not patterned with grooves . (c) The simulated field distributions at z = 7 μm above the patterned slit sample. The calculated intensities in (b) and (c) are normalized to the incident wave intensity.

Fig. 3
Fig. 3

The SNOM measured field distributions at different heights above the slit sample. Heights are from z = 0.5 μm to z = 10 μm, as noted. The scan areas of all experimental pictures shown here are 20 × 20 μm2 (note that the milled structure is approximately 12 × 12 μm2). The absolute measured intensity (in arbitrary units) of a photomultiplier is shown here.

Fig. 4
Fig. 4

The field evolutions in the z direction. (a) The simulated and (b) the experimental field distributions in the x = 0 yz plane. (c) The simulated and (d) the experimental field distributions in the y = 0 xz plane. In the simulated figures (a) and (c), the calculated intensities are normalized to the incident waves, while the intensities shown in the experimental figures (b) and (d) are normalized by the divided-by-maximum method.

Fig. 5
Fig. 5

(a)The SEM photo of the fabricated micro-hole sample. A scale bar of 2 μm is shown in the bottom. The area with structure are (12.17 ± 0.04) × (12.17 ± 0.02) μm2, whose value in design is 12 × 12 μm2. (b) The simulated field distribution of the surface waves excited by a 3 × 0.12 μm slit.Note that the silver surface in (b) is not patterned with grooves. (c) The field distributions at z = 7 μm above the micro-hole sample. The caculated intensities are normalized to the incident wave.

Fig. 6
Fig. 6

The SNOM measured field distributions at different heights above the slit sample. Heights are from z = 0.5 μm to z = 10 μm, as noted. The scan areas of all experimental pictures shown here are 20 × 20 μm2. The absolute measured intensity (in arbitrary units) of a photomultiplier is shown here.

Metrics