Abstract

Intrinsic mode coupling in a graded-index plastic optical fiber (GI POF) is investigated using the developed coupled power theory for a GI POF with a microscopic heterogeneous core. The results showed that the intrinsic material properties can induce random power transitions between all the guided modes, whereas the structural deformation of microbending results in nearest-neighbor coupling. It was numerically demonstrated that efficient group-delay averaging due to intrinsic mode coupling brings the pronounced bandwidth enhancement in fibers with much shorter length than the case of glass multimode fibers.

© 2013 OSA

PDF Article
OSA Recommended Articles
Intrinsic transmission bandwidths of graded-index plastic optical fibers

Azusa Inoue, Takafumi Sassa, Kenji Makino, Atsushi Kondo, and Yasuhiro Koike
Opt. Lett. 37(13) 2583-2585 (2012)

Reflection noise reduction effect of graded-index plastic optical fiber in multimode fiber link

Azusa Inoue, Rei Furukawa, Motoharu Matsuura, and Yasuhiro Koike
Opt. Lett. 39(12) 3662-3665 (2014)

Numerical analysis of modal dispersion in graded-index plastic optical fibers

Masashi Eguchi
Appl. Opt. 44(26) 5544-5548 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B 49(1), 2–17 (2011).
    [Crossref]
  2. A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett. 19(16), 1254–1256 (2007).
    [Crossref]
  3. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” J. Lightwave Technol. 21(1), 111–121 (2003).
    [Crossref]
  4. W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
    [Crossref]
  5. R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
    [Crossref]
  6. R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys. 51(2), 341–367 (1979).
    [Crossref]
  7. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt. 14(4), 935–945 (1975).
    [Crossref] [PubMed]
  8. Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules 25(18), 4807–4815 (1992).
    [Crossref]
  9. Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
    [Crossref]
  10. A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett. 37(13), 2583–2585 (2012).
    [Crossref] [PubMed]
  11. P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys. 20(6), 518–525 (1949).
    [Crossref]
  12. D. Marcuse, Theory of Dielectric Optical Waveguide (Academic Press, 1974).
  13. K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
    [Crossref]

2012 (1)

2011 (1)

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B 49(1), 2–17 (2011).
[Crossref]

2007 (1)

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett. 19(16), 1254–1256 (2007).
[Crossref]

2003 (1)

1999 (1)

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
[Crossref]

1997 (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

1992 (1)

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

1989 (1)

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

1980 (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[Crossref]

1979 (1)

R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys. 51(2), 341–367 (1979).
[Crossref]

1975 (1)

1949 (1)

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys. 20(6), 518–525 (1949).
[Crossref]

Bair, H. E.

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Bueche, A. M.

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys. 20(6), 518–525 (1949).
[Crossref]

Debye, P.

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys. 20(6), 518–525 (1949).
[Crossref]

Dueser, M.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
[Crossref]

Garito, A. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

Golowich, S. E.

Inoue, A.

Jiang, G.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

Kitayama, K.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[Crossref]

Knudsen, E.

Koeppen, C.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

Koike, K.

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B 49(1), 2–17 (2011).
[Crossref]

Koike, Y.

A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett. 37(13), 2583–2585 (2012).
[Crossref] [PubMed]

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B 49(1), 2–17 (2011).
[Crossref]

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Kondo, A.

Makino, K.

Matsuoka, S.

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Ohtsuka, Y.

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Olshansky, R.

R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys. 51(2), 341–367 (1979).
[Crossref]

R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt. 14(4), 935–945 (1975).
[Crossref] [PubMed]

Onishi, T.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
[Crossref]

Polley, A.

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett. 19(16), 1254–1256 (2007).
[Crossref]

Ralph, S. E.

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett. 19(16), 1254–1256 (2007).
[Crossref]

Reed, W. A.

S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” J. Lightwave Technol. 21(1), 111–121 (2003).
[Crossref]

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
[Crossref]

Sassa, T.

Seikai, S.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[Crossref]

Shi, R. F.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

Tanio, N.

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Uchida, N.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[Crossref]

Wang, J.

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

White, W.

White, W. R.

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett. 71(25), 3625–3627 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km-long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[Crossref]

IEEE Photon. Technol. Lett. (2)

W. R. White, M. Dueser, W. A. Reed, and T. Onishi, “Intermodal dispersion and mode coupling in perfluorinated graded-index plastic optical fiber,” IEEE Photon. Technol. Lett. 11(8), 997–999 (1999).
[Crossref]

A. Polley and S. E. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett. 19(16), 1254–1256 (2007).
[Crossref]

J. Appl. Phys. (1)

P. Debye and A. M. Bueche, “Scattering by an inhomogeneous Solid,” J. Appl. Phys. 20(6), 518–525 (1949).
[Crossref]

J. Lightwave Technol. (1)

J. Polym. Sci. B (1)

Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B 49(1), 2–17 (2011).
[Crossref]

Macromolecules (2)

Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess scattering in poly(methyl methacrylate) Glasses,” Macromolecules 25(18), 4807–4815 (1992).
[Crossref]

Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly(methyl methacrylate) glasses,” Macromolecules 22(3), 1367–1373 (1989).
[Crossref]

Opt. Lett. (1)

Rev. Mod. Phys. (1)

R. Olshansky, “Propagation in glass optical waveguide,” Rev. Mod. Phys. 51(2), 341–367 (1979).
[Crossref]

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguide (Academic Press, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics