Abstract

We report on the photoresponse of an asymmetrically doped p-Ge/n+-Si heterojunction photodiode fabricated by wafer bonding. Responsivities in excess of 1 A/W at 1.55 μm are measured with a 5.4 μm thick Ge layer under surface-normal illumination. Capacitance−voltage measurements show that the interfacial band structure is dependent on both temperature and light level, moving from depletion of holes at −50 °C to accumulation at 20 °C. Interface traps filled by photo-generated and thermally-generated carriers are shown to play a crucial role. Their filling alters the potential barrier height at the interface leading to increased flow of dark current and the above unity responsivity.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz broadband modulation in a biased BiFeO3/Si heterojunction

Xiankuan Liu, Zeyu Zhang, Xian Lin, Kailin Zhang, Zuanming Jin, Zhenxiang Cheng, and Guohong Ma
Opt. Express 24(23) 26618-26628 (2016)

Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating

Yi-Chun Lai, Yu-Fan Chang, Pei-Ting Tsai, Jan-kai Chang, Wei-Hsuan Tseng, Yi-Cheng Lin, Chu-Yen Hsiao, Hsiao-Wen Zan, Chih-I Wu, Gou-Chung Chi, Hsin-Fei Meng, and Peichen Yu
Opt. Express 24(2) A414-A423 (2016)

High-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform

L. Shen, Y. Jiao, W. Yao, Z. Cao, J. P. van Engelen, G. Roelkens, M. K. Smit, and J. J. G. M. van der Tol
Opt. Express 24(8) 8290-8301 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
    [Crossref]
  2. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
    [Crossref] [PubMed]
  3. J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
    [Crossref]
  4. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [Crossref] [PubMed]
  5. G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
    [Crossref]
  6. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008).
    [Crossref] [PubMed]
  7. H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
    [Crossref]
  8. F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
    [Crossref]
  9. A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
    [Crossref] [PubMed]
  10. D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
    [Crossref]
  11. S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
    [Crossref]
  12. Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
    [Crossref]
  13. J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
    [Crossref]
  14. F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
    [Crossref]
  15. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd edition (John Wiley & Sons, Inc., 2007).
  16. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
    [Crossref]
  17. G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
    [Crossref]

2012 (1)

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

2011 (2)

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
[Crossref]

2010 (3)

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
[Crossref]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

2009 (3)

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
[Crossref]

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

2008 (2)

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
[Crossref]

D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

2001 (2)

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

1974 (1)

G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
[Crossref]

Acciarri, M.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

Ahn, D.

Assanto, G.

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Bahir, G.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

Banerjee, S. K.

Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
[Crossref]

Beals, M.

Berroth, M.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

Bucher, H. K.

G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
[Crossref]

Buchwald, W. R.

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Burkey, B. C.

G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
[Crossref]

Byun, K. Y.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

Campbell, J. C.

Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
[Crossref]

Chen, J.

Chen, L.

Cherkaoui, K.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

Chrastina, D.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

Clausen, A. M.

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Colace, L.

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

Colinge, C.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

Corbett, B.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
[Crossref]

Dong, P.

Garber, V.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

Gity, F.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
[Crossref]

Giziewicz, W.

Hayes, J. M.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
[Crossref]

He, J.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

Hirose, M.

H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
[Crossref]

Hong, C.-Y.

Huang, Z.

Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
[Crossref]

Isella, G.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

Ito, T.

H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
[Crossref]

Joo, J.

D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
[Crossref]

Kanbe, H.

H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
[Crossref]

Kanel, H.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

Kärtner, F. X.

Kaschel, M.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

Kasper, E.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

Katz, O.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

Kaufmann, R.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

Kiefer, A. M.

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Kim, G.

D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
[Crossref]

Kim, S.

D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
[Crossref]

Kimerling, L. C.

D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

Klinger, S.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

Lagally, M. G.

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Lee, K.-H.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

Li, C.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

Lipson, M.

Liu, J.

Luan, H.-C.

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

Lubberts, G.

G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
[Crossref]

Masini, G.

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

Meyler, B.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

Michel, J.

Morrison, A. P.

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
[Crossref]

Oehme, M.

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

Oh, J.

Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
[Crossref]

Osmond, J.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

Paskiewicz, D. M.

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Salzman, J.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

Soref, R. A.

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Suh, D.

D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
[Crossref]

Taniwaki, M.

H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
[Crossref]

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

von Känel, H.

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

Wang, R.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

Wolf, E. L.

G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
[Crossref]

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Yu, J.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

Zhou, Z.

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

ACS Nano (1)

A. M. Kiefer, D. M. Paskiewicz, A. M. Clausen, W. R. Buchwald, R. A. Soref, and M. G. Lagally, “Si/Ge junctions formed by nanomembrane bonding,” ACS Nano 5(2), 1179–1189 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

F. Gity, K. Y. Byun, K.-H. Lee, K. Cherkaoui, J. M. Hayes, A. P. Morrison, C. Colinge, and B. Corbett, “Characterization of germanium/silicon p-n junction fabricated by low temperature direct wafer bonding and layer exfoliation,” Appl. Phys. Lett. 100(9), 092102 (2012).
[Crossref]

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79(10), 1417–1419 (2001).
[Crossref]

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett. 94(20), 201106 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron. 43(3), 238–242 (2007).
[Crossref]

F. Gity, J. M. Hayes, B. Corbett, and A. P. Morrison, “Modeling the effects of interface traps on the static and dynamic characteristics of Ge/Si avalanche photodiodes,” IEEE J. Quantum Electron. 47(6), 849–857 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

D. Suh, S. Kim, J. Joo, and G. Kim, “36-GHz high-responsivity Ge photodetectors grown by RPCVD,” IEEE Photon. Technol. Lett. 21(10), 672–674 (2009).
[Crossref]

S. Klinger, M. Berroth, M. Kaschel, M. Oehme, and E. Kasper, “Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz,” IEEE Photon. Technol. Lett. 21(13), 920–922 (2009).
[Crossref]

IEEE Trans. Electron. Dev. (1)

G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: From model to demonstration,” IEEE Trans. Electron. Dev. 48(6), 1092–1096 (2001).
[Crossref]

J. Appl. Phys. (1)

G. Lubberts, B. C. Burkey, H. K. Bucher, and E. L. Wolf, “Photodetection by light-induced barrier modulation in Cu-diffused Au-CdS diodes,” J. Appl. Phys. 45(5), 2180 (1974).
[Crossref]

J. Electron. Mater. (1)

H. Kanbe, M. Hirose, T. Ito, and M. Taniwaki, “Crystallographic properties of Ge/Si heterojunctions fabricated by wet wafer bonding,” J. Electron. Mater. 39(8), 1248–1255 (2010).
[Crossref]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Zhou, J. He, R. Wang, C. Li, and J. Yu, “Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition,” Opt. Commun. 283(18), 3404–3407 (2010).
[Crossref]

Opt. Express (2)

Thin Solid Films (1)

J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, and H. Kanel, “Ge/Si (100) heterojunction photodiodes fabricated from material grown by low-energy plasma-enhanced chemical vapour deposition,” Thin Solid Films 517(1), 380–382 (2008).
[Crossref]

Other (1)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd edition (John Wiley & Sons, Inc., 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of the Ge/Si photodetectors made by wafer bonding followed by chemical-mechanical polishing. (b) HR-TEM image of the Ge/Si interface. The two zoomed-in images show the thin (~2 nm thick) interfacial layer (on the left) and the thick region (on the right).

Fig. 2
Fig. 2

(a) Dark current density (J) versus reverse bias voltage (left axis) and C−V characteristic at 100 kHz (right axis) of the Ge/Si diode. The inset shows the J−V characteristics at two different temperatures. (b) 1/C2 versus reverse bias voltage at 20 °C and −50 °C. The value of the built-in potential (Ψbi) is shown. The inset of part (b) shows the depletion width (WD) as a function of reverse bias voltage at 20 °C and −50 °C. The shaded region illustrates the effect of charges captured by the interface traps at 20 °C.

Fig. 3
Fig. 3

Schematic representation of the Ge/Si band diagram at equilibrium at (a) −50 °C, and (b) 20 °C. Ψbi and ΨBp are the built-in potential and the Fermi potential with respect to the midgap in the bulk of p-Ge, respectively. ΦB is the potential barrier height. In part (a), the Ge surface at the interface is in the “weak inversion” mode while in part (b) it is in the “accumulation” mode due to trap filling. The dashed lines in (a) and (b) are the intrinsic Fermi level. The inset of part (b) schematically illustrates the potential barrier lowering due to filling of acceptor traps by either temperature or light.

Fig. 4
Fig. 4

(a) Responsivity of the Ge/Si photodiode versus input optical power at a wavelength of 1.55 μm and V = −2 V at two temperatures. (b) Responsivity as a function of wavelength at a constant optical power of 40 μW at different reverse bias voltages and temperatures.

Metrics