Abstract

We demonstrate an approach to actively stabilize the beam profile of a fiber amplifier above the mode instability threshold. Both the beam quality and the pointing stability are significantly increased at power levels of up to three times the mode instabilities threshold. The physical working principle is discussed at the light of the recently published theoretical explanations of mode instabilities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  2. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
    [CrossRef] [PubMed]
  3. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
    [CrossRef] [PubMed]
  4. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011).
    [CrossRef] [PubMed]
  5. N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express18(5), 4411–4416 (2010).
    [CrossRef] [PubMed]
  6. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]
  7. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
    [CrossRef] [PubMed]
  8. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19, 23965–23980 (2011).
  9. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).
  10. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
    [CrossRef]
  11. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett.37(12), 2382–2384 (2012).
    [CrossRef] [PubMed]
  12. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012).
    [CrossRef] [PubMed]
  13. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
    [CrossRef] [PubMed]
  14. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012).
    [CrossRef] [PubMed]
  15. N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, A. Tünnermann, and O. De Vries, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express20(12), 13274–13283 (2012).
    [CrossRef] [PubMed]
  16. S. Breitkopf, A. Klenke, T. Gottschall, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
    [CrossRef] [PubMed]
  17. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express20(22), 24545–24558 (2012).
    [CrossRef] [PubMed]
  18. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  19. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
    [CrossRef] [PubMed]
  20. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
    [CrossRef] [PubMed]
  21. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011).
    [CrossRef] [PubMed]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 2007).

2012

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
[CrossRef] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, A. Tünnermann, and O. De Vries, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express20(12), 13274–13283 (2012).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett.37(12), 2382–2384 (2012).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express20(22), 24545–24558 (2012).
[CrossRef] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
[CrossRef] [PubMed]

2011

2010

2001

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

1991

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Alkeskjold, T. T.

Andermahr, N.

Andersen, T. V.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Breitkopf, S.

Broeng, J.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

Clarkson, W. A.

Dajani, I.

de Vries, O.

Eberhardt, R.

Eidam, T.

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
[CrossRef] [PubMed]

Fallnich, C.

Gabler, T.

Gaida, C.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Gottschall, T.

Haarlammert, N.

Hanf, S.

Hansen, K. R.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

Jansen, F.

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
[CrossRef] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

Jauregui, C.

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
[CrossRef] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

Jørgensen, M. M.

Klenke, A.

Kliner, A.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Lægsgaard, J.

Laurila, M.

Liem, A.

Limpert, J.

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
[CrossRef] [PubMed]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Nilsson, J.

Otto, H.-J.

Peschel, T.

Richardson, D. J.

Robin, C.

Schmidt, O.

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Steinmetz, A.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Stutzki, F.

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011).
[CrossRef] [PubMed]

Tünnermann, A.

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37(6), 1073–1075 (2012).
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

S. Breitkopf, A. Klenke, T. Gottschall, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012).
[CrossRef] [PubMed]

N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, A. Tünnermann, and O. De Vries, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express20(12), 13274–13283 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett.36(23), 4572–4574 (2011).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
[CrossRef] [PubMed]

Ward, B.

Wirth, C.

IEEE J. Quantum Electron.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron.37(2), 207–217 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20(4), 3997–4008 (2012).
[CrossRef] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012).
[CrossRef] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012).
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012).
[CrossRef] [PubMed]

N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, A. Tünnermann, and O. De Vries, “Build up and decay of mode instability in a high power fiber amplifier,” Opt. Express20(12), 13274–13283 (2012).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express19(14), 13218–13224 (2011).
[CrossRef] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermo-optical effects in high-power ytterbium-doped fiber amplifiers,” Opt. Express19, 23965–23980 (2011).

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express20(22), 24545–24558 (2012).
[CrossRef] [PubMed]

N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express18(5), 4411–4416 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Optoelectronics, IEE J

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” Optoelectronics, IEE J. 138(5), 343–354 (1991).

Other

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 2007).

Supplementary Material (9)

» Media 1: MP4 (3636 KB)     
» Media 2: MP4 (4923 KB)     
» Media 3: MP4 (463 KB)     
» Media 4: MP4 (850 KB)     
» Media 5: MP4 (847 KB)     
» Media 6: MP4 (678 KB)     
» Media 7: MP4 (91 KB)     
» Media 8: MP4 (381 KB)     
» Media 9: MP4 (1517 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of the dynamic mode excitation setup consisting of the seed source, the acousto-optic deflector, the main amplifier and the beam diagnostics (low- and high-speed camera, photodiode).

Fig. 2
Fig. 2

Sketch of the two different positions of the deflected incoming beam at the fiber input end and their corresponding intensity interference patterns induced by the modal beating of the FM and the LP11 (just sketched for illustration purposes). The corresponding transverse refractive index profiles along the dashed white line are plotted in the right-hand side. The “0” dashed line on the left-hand side diagrams indicates the height of the center of the fiber core.

Fig. 3
Fig. 3

Evolution of the measured standard deviation of the amplified signal as a function of the output power. The progressively increasing slope is used to calculate the threshold of the fiber laser system by applying the method from [20]. Pthr is determined to (109 ± 5) W.

Fig. 4
Fig. 4

Fourier spectra calculated from photodiode traces at four different output power levels, showing the evolution from the stable regime (green) to the periodic regime (black) and up to strong mode instabilities (red and orange)

Fig. 5
Fig. 5

Excerpts from a) the low-speed (Media 1) and b) the high-speed videos (Media 2) showing mode instabilities at five different output power levels.

Fig. 6
Fig. 6

Evolution of the relative power contents of the modes involved in MI at a) 195 W and b) 229 W. The graphs were obtained by applying the mode reconstruction method of [21] to the high-speed videos from Media 2.

Fig. 7
Fig. 7

Excerpt from Media 5. On the left-hand side the high-speed video of MI at 150% of the threshold (corresponding to 150 W of output power) with dynamic excitation is shown. The blue and green circles estimate the size and position of the photodiode and of the deflected input-signal beam relative to the excited fiber modes. The corresponding measured photodiode time trace (blue) and the driving signal for the AOD (green) are shown on the right-hand side.

Fig. 8
Fig. 8

Excerpt from the low speed video (Media 6) showing the comparison between the free running and the stabilized beam profile at two times Pthr (220 W).

Fig. 9
Fig. 9

Excerpts from a) Media 7 and b) Media 8 showing the stable LP11 beam profiles recorded by a) the low speed camera and c) high speed camera.

Fig. 10
Fig. 10

Evolution of the relative power contents obtained by the mode reconstruction technique described in [19]. The output power is 210 W and it corresponds to the upper power limit of the transition regime of MI.

Fig. 11
Fig. 11

Excerpt from the low speed video (Media 9) showing the comparison between the free-running and the stabilized beam profiles from 200% Pthr (220 W) to 430% Pthr (472 W).

Fig. 12
Fig. 12

Calculated evolutions of the relative modal power contents of the FM (blue) and the strongest HOM (grey) for different output powers: a) 200% Pthr (217 W), b) 240% Pthr (261 W), c) 270% Pthr (298 W), d) 300% Pthr (330 W), e) 330% Pthr (360 W), f) 430% Pthr (472 W). The sum of all the relative power contents was normalized to 1 in each plot.

Fig. 13
Fig. 13

Comparison of the average relative mode content of the FM of the free–running (red) and of the stabilized system (blue). The squares represent the time average relative modal content of the FM at each power level. The error bars represent the corresponding standard deviation. At output powers above 250% Pthr the modal reconstruction was no longer possible in the case of the free-running system.

Tables (2)

Tables Icon

Table 1 Optimization algorithm parameters.

Tables Icon

Table 2 Function type, frequency and amplitude of the AOD

Metrics