Abstract

Imaging multiple fluorescent proteins (FPs) by two-photon microscopy has numerous applications for studying biological processes in thick and live samples. Here we demonstrate a setup utilizing a single broadband laser and a phase-only pulse-shaper to achieve imaging of three FPs (mAmetrine, TagRFPt, and mKate2) in live mammalian cells. Phase-shaping to achieve selective excitation of the FPs in combination with post-imaging linear unmixing enables clean separation of the fluorescence signal of each FP. This setup also benefits from low overall cost and simple optical alignment, enabling easy adaptation in a regular biomedical research laboratory.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
    [CrossRef] [PubMed]
  2. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005).
    [CrossRef] [PubMed]
  3. E. R. Tkaczyk and A. H. Tkaczyk, “Multiphoton flow cytometry strategies and applications,” Cytometry A79(10), 775–788 (2011).
    [CrossRef] [PubMed]
  4. M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
    [CrossRef] [PubMed]
  5. D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
    [CrossRef] [PubMed]
  6. J. Lippincott-Schwartz and G. H. Patterson, “Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging,” Trends Cell Biol.19(11), 555–565 (2009).
    [CrossRef] [PubMed]
  7. D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
    [CrossRef] [PubMed]
  8. H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
    [CrossRef] [PubMed]
  9. B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
    [CrossRef] [PubMed]
  10. T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
    [CrossRef] [PubMed]
  11. J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
    [CrossRef] [PubMed]
  12. H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
    [CrossRef] [PubMed]
  13. K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
    [CrossRef] [PubMed]
  14. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
    [CrossRef] [PubMed]
  15. T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
    [CrossRef] [PubMed]
  16. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  17. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt.1(3), 296–304 (1996).
    [CrossRef] [PubMed]
  18. H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, “Two-photon dual-color imaging using fluorescent proteins,” Nat. Methods5(5), 373–374 (2008).
    [CrossRef] [PubMed]
  19. S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
    [CrossRef] [PubMed]
  20. E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
    [CrossRef] [PubMed]
  21. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001).
    [CrossRef] [PubMed]
  22. D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
    [CrossRef] [PubMed]
  23. P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
    [CrossRef] [PubMed]
  24. K. Wang, T. M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express3(9), 1972–1977 (2012).
    [CrossRef] [PubMed]
  25. J. P. Ogilvie, D. Débarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express14(2), 759–766 (2006).
    [CrossRef] [PubMed]
  26. L. T. Schelhas, J. C. Shane, and M. Dantus, “Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging,” Nanomedicine2(3), 177–181 (2006).
    [CrossRef] [PubMed]
  27. R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express17(15), 12741–12752 (2009).
    [CrossRef] [PubMed]
  28. K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses,” Opt. Express17(16), 13737–13746 (2009).
    [CrossRef] [PubMed]
  29. D. S. Moore, “Optimal coherent control of sensitivity and selectivity in spectrochemical analysis,” Anal. Bioanal. Chem.393(1), 51–56 (2009).
    [CrossRef] [PubMed]
  30. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
    [CrossRef] [PubMed]
  31. I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
    [CrossRef] [PubMed]
  32. E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
    [CrossRef] [PubMed]
  33. M. Comstock, V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express12(6), 1061–1066 (2004).
    [CrossRef] [PubMed]
  34. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature396(6708), 239–242 (1998).
    [CrossRef]
  35. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
    [CrossRef]
  36. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
    [CrossRef]
  37. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  38. V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem6(10), 1970–2000 (2005).
    [CrossRef] [PubMed]
  39. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
    [CrossRef]
  40. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.- Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B25(6), A140–A150 (2008).
    [CrossRef]
  41. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750–759 (2006).
    [CrossRef]
  42. E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
    [CrossRef] [PubMed]
  43. N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
    [CrossRef] [PubMed]
  44. D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
    [CrossRef] [PubMed]
  45. E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
    [CrossRef] [PubMed]
  46. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
    [CrossRef] [PubMed]
  47. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003).
    [CrossRef] [PubMed]
  48. I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
    [CrossRef] [PubMed]
  49. J. W. Boardman, “Inversion Of Imaging Spectrometry Data Using Singular Value Decomposition,” in Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing., 1989 International (1989), 2069–2072.
    [CrossRef]
  50. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002).
    [CrossRef] [PubMed]
  51. B. Kraus, M. Ziegler, and H. Wolff, Linear Fluorescence Unmixing in Cell Biological Research (2007).
  52. S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
    [CrossRef] [PubMed]
  53. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69(8), 735–747 (2006).
    [CrossRef] [PubMed]
  54. L. M. Davis and G. Shen, “Extension of multidimensional microscopy to ultrasensitive applications with maximum-likelihood analysis,” Proc. SPIE6443, 64430N, 64430N-12 (2007).
    [CrossRef]
  55. M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
    [CrossRef] [PubMed]
  56. B. Xu, Y. Coello, V. V. Lozovoy, and M. Dantus, “Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses,” Appl. Opt.49(32), 6348–6353 (2010).
    [CrossRef] [PubMed]
  57. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
    [CrossRef] [PubMed]
  58. D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
    [CrossRef]

2012 (3)

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

K. Wang, T. M. Liu, J. Wu, N. G. Horton, C. P. Lin, and C. Xu, “Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy,” Biomed. Opt. Express3(9), 1972–1977 (2012).
[CrossRef] [PubMed]

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

2011 (4)

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

E. R. Tkaczyk and A. H. Tkaczyk, “Multiphoton flow cytometry strategies and applications,” Cytometry A79(10), 775–788 (2011).
[CrossRef] [PubMed]

2010 (5)

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
[CrossRef] [PubMed]

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

B. Xu, Y. Coello, V. V. Lozovoy, and M. Dantus, “Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses,” Appl. Opt.49(32), 6348–6353 (2010).
[CrossRef] [PubMed]

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
[CrossRef]

2009 (8)

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
[CrossRef] [PubMed]

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

J. Lippincott-Schwartz and G. H. Patterson, “Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging,” Trends Cell Biol.19(11), 555–565 (2009).
[CrossRef] [PubMed]

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express17(15), 12741–12752 (2009).
[CrossRef] [PubMed]

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses,” Opt. Express17(16), 13737–13746 (2009).
[CrossRef] [PubMed]

D. S. Moore, “Optimal coherent control of sensitivity and selectivity in spectrochemical analysis,” Anal. Bioanal. Chem.393(1), 51–56 (2009).
[CrossRef] [PubMed]

2008 (4)

H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, “Two-photon dual-color imaging using fluorescent proteins,” Nat. Methods5(5), 373–374 (2008).
[CrossRef] [PubMed]

H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
[CrossRef] [PubMed]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.- Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B25(6), A140–A150 (2008).
[CrossRef]

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

2007 (6)

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

L. M. Davis and G. Shen, “Extension of multidimensional microscopy to ultrasensitive applications with maximum-likelihood analysis,” Proc. SPIE6443, 64430N, 64430N-12 (2007).
[CrossRef]

D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
[CrossRef] [PubMed]

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

2006 (6)

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
[CrossRef] [PubMed]

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

J. P. Ogilvie, D. Débarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express14(2), 759–766 (2006).
[CrossRef] [PubMed]

L. T. Schelhas, J. C. Shane, and M. Dantus, “Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging,” Nanomedicine2(3), 177–181 (2006).
[CrossRef] [PubMed]

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69(8), 735–747 (2006).
[CrossRef] [PubMed]

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750–759 (2006).
[CrossRef]

2005 (4)

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem6(10), 1970–2000 (2005).
[CrossRef] [PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005).
[CrossRef] [PubMed]

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

2004 (2)

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

M. Comstock, V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express12(6), 1061–1066 (2004).
[CrossRef] [PubMed]

2003 (3)

I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
[CrossRef]

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003).
[CrossRef] [PubMed]

2002 (2)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
[CrossRef]

2001 (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001).
[CrossRef] [PubMed]

2000 (3)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

1999 (1)

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

1998 (2)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature396(6708), 239–242 (1998).
[CrossRef]

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

1996 (1)

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt.1(3), 296–304 (1996).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Abe, Y.

H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, “Two-photon dual-color imaging using fluorescent proteins,” Nat. Methods5(5), 373–374 (2008).
[CrossRef] [PubMed]

Adams, S. R.

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
[CrossRef] [PubMed]

Ai, H. W.

H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
[CrossRef] [PubMed]

Andegeko, Y.

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
[CrossRef]

Araki, T.

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Baker, J. R.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

Bareyre, F. M.

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

Barker, N.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Baur, D.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Bearman, G.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001).
[CrossRef] [PubMed]

Beaurepaire, E.

Bennis, R. A.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

Bernstein, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Bickel, C.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Boardman, J. W.

J. W. Boardman, “Inversion Of Imaging Spectrometry Data Using Singular Value Decomposition,” in Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing., 1989 International (1989), 2069–2072.
[CrossRef]

Bogdanova, E. A.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Borukhovich, I.

Boudoux, C.

Brack-Werner, R.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Bradley, J.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

Bulina, M. E.

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Burgess, R. W.

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

Cai, D.

M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
[CrossRef] [PubMed]

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
[CrossRef] [PubMed]

Campbell, R. E.

H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
[CrossRef] [PubMed]

Ceccherini-Silberstein, F.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Charpak, S.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

Chepurnykh, T. V.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Chudakov, D. M.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Clark, I. B.

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

Clevers, H.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Coello, Y.

Comstock, M.

Condeelis, J.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

Cruz, J. M. D.

Dantus, M.

B. Xu, Y. Coello, V. V. Lozovoy, and M. Dantus, “Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses,” Appl. Opt.49(32), 6348–6353 (2010).
[CrossRef] [PubMed]

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
[CrossRef]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.- Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B25(6), A140–A150 (2008).
[CrossRef]

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750–759 (2006).
[CrossRef]

L. T. Schelhas, J. C. Shane, and M. Dantus, “Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging,” Nanomedicine2(3), 177–181 (2006).
[CrossRef] [PubMed]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem6(10), 1970–2000 (2005).
[CrossRef] [PubMed]

M. Comstock, V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express12(6), 1061–1066 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
[CrossRef]

I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
[CrossRef]

Davidson, M. W.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
[CrossRef] [PubMed]

Davis, L. M.

L. M. Davis and G. Shen, “Extension of multidimensional microscopy to ultrasensitive applications with maximum-likelihood analysis,” Proc. SPIE6443, 64430N, 64430N-12 (2007).
[CrossRef]

Débarre, D.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

J. P. Ogilvie, D. Débarre, X. Solinas, J. L. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express14(2), 759–766 (2006).
[CrossRef] [PubMed]

Dela Cruz, J.

Dela Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

Denk, W.

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt.1(3), 296–304 (1996).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Draft, R. W.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

Ducros, M.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

Ellisman, M. H.

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
[CrossRef] [PubMed]

Entenberg, D.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

Erfle, V.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Ermakova, G. V.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Farge, E.

Feng, G.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Fradkov, A. F.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001).
[CrossRef] [PubMed]

Gadella, T. W.

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Gaintzeva, A.

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69(8), 735–747 (2006).
[CrossRef] [PubMed]

Gertler, F.

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

Giepmans, B. N.

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
[CrossRef] [PubMed]

Gligorijevic, B.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

Goedhart, J.

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Griesbeck, O.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

Gunaratne, T. C.

Gunn, J. M.

Haraguchi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002).
[CrossRef] [PubMed]

Hattori, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Hazelwood, K. L.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
[CrossRef] [PubMed]

Hell, S. W.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Hiraoka, Y.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002).
[CrossRef] [PubMed]

Hirose, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Hoppe, A. D.

D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
[CrossRef] [PubMed]

Horton, N. G.

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

Isobe, K.

Joffre, M.

Kang, H.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

Kannari, F.

Karasawa, S.

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Kawano, H.

Keller-Peck, C.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Kerschensteiner, M.

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

Kinjo, M.

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Klein, A. M.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Klingseisen, A.

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

Koester, H. J.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

Kogure, T.

H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, “Two-photon dual-color imaging using fluorescent proteins,” Nat. Methods5(5), 373–374 (2008).
[CrossRef] [PubMed]

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Kramer-Hämmerle, S.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Krasnow, M. A.

K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
[CrossRef] [PubMed]

Kraus, B.

B. Kraus, M. Ziegler, and H. Wolff, Linear Fluorescence Unmixing in Cell Biological Research (2007).

Kroon-Veenboer, C.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Labroille, G.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express17(15), 12741–12752 (2009).
[CrossRef] [PubMed]

Lansford, R.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001).
[CrossRef] [PubMed]

Leptin, M.

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

Lichtman, J. W.

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Lin, C. P.

Lin, M. Z.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

J. Lippincott-Schwartz and G. H. Patterson, “Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging,” Trends Cell Biol.19(11), 555–565 (2009).
[CrossRef] [PubMed]

Liu, T. M.

Livet, J.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

Loulier, K.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

Lozovoy, V.

Lozovoy, V. V.

B. Xu, Y. Coello, V. V. Lozovoy, and M. Dantus, “Two-photon fluorescence excitation spectroscopy by pulse shaping ultrabroad-bandwidth femtosecond laser pulses,” Appl. Opt.49(32), 6348–6353 (2010).
[CrossRef] [PubMed]

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
[CrossRef]

Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C.- Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B25(6), A140–A150 (2008).
[CrossRef]

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750–759 (2006).
[CrossRef]

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem6(10), 1970–2000 (2005).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
[CrossRef]

Lu, J.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

Luker, G. D.

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

Luker, K. E.

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

Lukyanov, K. A.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Lukyanov, S.

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Mahou, P.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

Martens, J. R.

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

Martin, J. L.

Matho, K. S.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

Mauring, K.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

McEwen, D. P.

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

McKeown, M. R.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69(8), 735–747 (2006).
[CrossRef] [PubMed]

Mellor, R. H.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Merzlyak, E. M.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature396(6708), 239–242 (1998).
[CrossRef]

Meyhofer, E.

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

Midorikawa, K.

Mihalko, L. A.

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

Misgeld, T.

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

Miyawaki, A.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses,” Opt. Express17(16), 13737–13746 (2009).
[CrossRef] [PubMed]

H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, “Two-photon dual-color imaging using fluorescent proteins,” Nat. Methods5(5), 373–374 (2008).
[CrossRef] [PubMed]

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Mizuno, H.

Moore, D. S.

D. S. Moore, “Optimal coherent control of sensitivity and selectivity in spectrochemical analysis,” Anal. Bioanal. Chem.393(1), 51–56 (2009).
[CrossRef] [PubMed]

Moreaux, L.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

Morin, X.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

Muha, V.

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

Müller, H. A.

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

Nerbonne, J. M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Nguyen, Q. T.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Nishimura, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Norris, T. B.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

Ogilvie, J. P.

Okumura, K.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Olivier, N.

Pastirk, I.

M. Comstock, V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express12(6), 1061–1066 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
[CrossRef]

I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express11(14), 1695–1701 (2003).
[CrossRef] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
[CrossRef]

Patterson, G. H.

J. Lippincott-Schwartz and G. H. Patterson, “Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging,” Trends Cell Biol.19(11), 555–565 (2009).
[CrossRef] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003).
[CrossRef] [PubMed]

Pestov, D.

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
[CrossRef]

Philippar, U.

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

Pillai, R. S.

Pollard, J. W.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

Qian, M.

M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
[CrossRef] [PubMed]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

Red-Horse, K.

K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
[CrossRef] [PubMed]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003).
[CrossRef] [PubMed]

Roussos, E. T.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

Sahai, E.

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

Saito, K.

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Salomonnson, E.

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

Sanes, J. R.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Sato, T.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Schelhas, L. T.

L. T. Schelhas, J. C. Shane, and M. Dantus, “Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging,” Nanomedicine2(3), 177–181 (2006).
[CrossRef] [PubMed]

Segall, J. E.

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

Shane, J. C.

L. T. Schelhas, J. C. Shane, and M. Dantus, “Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging,” Nanomedicine2(3), 177–181 (2006).
[CrossRef] [PubMed]

Shaner, N. C.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005).
[CrossRef] [PubMed]

Shcheglov, A. S.

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Shcherbo, D.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

Shen, G.

L. M. Davis and G. Shen, “Extension of multidimensional microscopy to ultrasensitive applications with maximum-likelihood analysis,” Proc. SPIE6443, 64430N, 64430N-12 (2007).
[CrossRef]

Shimi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002).
[CrossRef] [PubMed]

Shirai, T.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Silberberg, Y.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature396(6708), 239–242 (1998).
[CrossRef]

Simons, B. D.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Snippert, H. J.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Solinas, X.

Solovieva, E. A.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Steinbach, P. A.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Suda, A.

Supatto, W.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

Swanson, J. A.

D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
[CrossRef] [PubMed]

Tanaka, M.

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

Tiret, P.

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

Tkaczyk, A. H.

E. R. Tkaczyk and A. H. Tkaczyk, “Multiphoton flow cytometry strategies and applications,” Cytometry A79(10), 775–788 (2011).
[CrossRef] [PubMed]

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

Tkaczyk, E. R.

E. R. Tkaczyk and A. H. Tkaczyk, “Multiphoton flow cytometry strategies and applications,” Cytometry A79(10), 775–788 (2011).
[CrossRef] [PubMed]

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

Tsai, B.

M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
[CrossRef] [PubMed]

Tseng, C.-

Tsien, R. Y.

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
[CrossRef] [PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005).
[CrossRef] [PubMed]

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

Tsurui, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

Ueno, H.

K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
[CrossRef] [PubMed]

Uhl, R.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

van den Born, M.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

van der Flier, L. G.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

van Es, J. H.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

van Rheenen, J.

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Veilleux, I.

Verhey, K. J.

M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
[CrossRef] [PubMed]

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
[CrossRef] [PubMed]

Verkhusha, V. V.

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

Vincendeau, M.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Wallace, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Walowicz, K.

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
[CrossRef]

Wang, K.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weinacht, T.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Weissman, I. L.

K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
[CrossRef] [PubMed]

Weissman, T. A.

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

Werner, T.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Wolff, H.

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

B. Kraus, M. Ziegler, and H. Wolff, Linear Fluorescence Unmixing in Cell Biological Research (2007).

Wu, J.

Wyckoff, J.

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

Xu, B.

Xu, C.

Ye, J. Y.

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69(8), 735–747 (2006).
[CrossRef] [PubMed]

Zaraisky, A. G.

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Ziegler, M.

B. Kraus, M. Ziegler, and H. Wolff, Linear Fluorescence Unmixing in Cell Biological Research (2007).

Zimmerley, M.

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

D. S. Moore, “Optimal coherent control of sensitivity and selectivity in spectrochemical analysis,” Anal. Bioanal. Chem.393(1), 51–56 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (1)

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J.77(4), 2226–2236 (1999).
[CrossRef] [PubMed]

BMC Biotechnol. (2)

S. E. Tillo, T. E. Hughes, N. S. Makarov, A. Rebane, and M. Drobizhev, “A new approach to dual-color two-photon microscopy with fluorescent proteins,” BMC Biotechnol.10(1), 6 (2010).
[CrossRef] [PubMed]

E. Sahai, J. Wyckoff, U. Philippar, J. E. Segall, F. Gertler, and J. Condeelis, “Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy,” BMC Biotechnol.5(1), 14 (2005).
[CrossRef] [PubMed]

BMC Cell Biol. (1)

S. Kramer-Hämmerle, F. Ceccherini-Silberstein, C. Bickel, H. Wolff, M. Vincendeau, T. Werner, V. Erfle, and R. Brack-Werner, “Identification of a novel Rev-interacting cellular protein,” BMC Cell Biol.6(1), 20 (2005).
[CrossRef] [PubMed]

Cell (1)

H. J. Snippert, L. G. van der Flier, T. Sato, J. H. van Es, M. van den Born, C. Kroon-Veenboer, N. Barker, A. M. Klein, J. van Rheenen, B. D. Simons, and H. Clevers, “Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells,” Cell143(1), 134–144 (2010).
[CrossRef] [PubMed]

Cell Struct. Funct. (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002).
[CrossRef] [PubMed]

ChemPhysChem (1)

V. V. Lozovoy and M. Dantus, “Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses,” ChemPhysChem6(10), 1970–2000 (2005).
[CrossRef] [PubMed]

Cytometry A (2)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A69(8), 735–747 (2006).
[CrossRef] [PubMed]

E. R. Tkaczyk and A. H. Tkaczyk, “Multiphoton flow cytometry strategies and applications,” Cytometry A79(10), 775–788 (2011).
[CrossRef] [PubMed]

Development (1)

I. B. Clark, V. Muha, A. Klingseisen, M. Leptin, and H. A. Müller, “Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila,” Development138(13), 2705–2715 (2011).
[CrossRef] [PubMed]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

E. Salomonnson, L. A. Mihalko, V. V. Verkhusha, K. E. Luker, and G. D. Luker, “Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy,” J. Biomed. Opt.17(9), 096001 (2012).
[CrossRef] [PubMed]

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt.1(3), 296–304 (1996).
[CrossRef] [PubMed]

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt.6(3), 311–318 (2001).
[CrossRef] [PubMed]

J. Cell Biol. (1)

D. Cai, A. D. Hoppe, J. A. Swanson, and K. J. Verhey, “Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells,” J. Cell Biol.176(1), 51–63 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys.118(7), 3187–3196 (2003).
[CrossRef]

J. Fluoresc. (1)

E. R. Tkaczyk, A. H. Tkaczyk, K. Mauring, J. Y. Ye, J. R. Baker, and T. B. Norris, “Control of two-photon fluorescence of common dyes and conjugated dyes,” J. Fluoresc.19(3), 517–532 (2009).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem.48(5), 653–662 (2000).
[CrossRef] [PubMed]

J. Opt. (1)

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt.12(8), 084006 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (2)

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton Intrapulse Interference 3: Probing Microscopic Chemical Environments,” J. Phys. Chem. A108(1), 53–58 (2004).
[CrossRef]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton Intrapulse Interference. 1. Control of Multiphoton Processes in Condensed Phases,” J. Phys. Chem. A106(41), 9369–9373 (2002).
[CrossRef]

Nanomedicine (1)

L. T. Schelhas, J. C. Shane, and M. Dantus, “Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging,” Nanomedicine2(3), 177–181 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

T. Kogure, S. Karasawa, T. Araki, K. Saito, M. Kinjo, and A. Miyawaki, “A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy,” Nat. Biotechnol.24(5), 577–581 (2006).
[CrossRef] [PubMed]

Nat. Methods (9)

H. Kawano, T. Kogure, Y. Abe, H. Mizuno, and A. Miyawaki, “Two-photon dual-color imaging using fluorescent proteins,” Nat. Methods5(5), 373–374 (2008).
[CrossRef] [PubMed]

T. Misgeld, M. Kerschensteiner, F. M. Bareyre, R. W. Burgess, and J. W. Lichtman, “Imaging axonal transport of mitochondria in vivo,” Nat. Methods4(7), 559–561 (2007).
[CrossRef] [PubMed]

H. W. Ai, K. L. Hazelwood, M. W. Davidson, and R. E. Campbell, “Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors,” Nat. Methods5(5), 401–403 (2008).
[CrossRef] [PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods2(12), 905–909 (2005).
[CrossRef] [PubMed]

P. Mahou, M. Zimmerley, K. Loulier, K. S. Matho, G. Labroille, X. Morin, W. Supatto, J. Livet, D. Débarre, and E. Beaurepaire, “Multicolor two-photon tissue imaging by wavelength mixing,” Nat. Methods9(8), 815–818 (2012).
[CrossRef] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011).
[CrossRef] [PubMed]

E. M. Merzlyak, J. Goedhart, D. Shcherbo, M. E. Bulina, A. S. Shcheglov, A. F. Fradkov, A. Gaintzeva, K. A. Lukyanov, S. Lukyanov, T. W. Gadella, and D. M. Chudakov, “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nat. Methods4(7), 555–557 (2007).
[CrossRef] [PubMed]

N. C. Shaner, M. Z. Lin, M. R. McKeown, P. A. Steinbach, K. L. Hazelwood, M. W. Davidson, and R. Y. Tsien, “Improving the photostability of bright monomeric orange and red fluorescent proteins,” Nat. Methods5(6), 545–551 (2008).
[CrossRef] [PubMed]

D. Shcherbo, E. M. Merzlyak, T. V. Chepurnykh, A. F. Fradkov, G. V. Ermakova, E. A. Solovieva, K. A. Lukyanov, E. A. Bogdanova, A. G. Zaraisky, S. Lukyanov, and D. M. Chudakov, “Bright far-red fluorescent protein for whole-body imaging,” Nat. Methods4(9), 741–746 (2007).
[CrossRef] [PubMed]

Nat. Protoc. (1)

D. Entenberg, J. Wyckoff, B. Gligorijevic, E. T. Roussos, V. V. Verkhusha, J. W. Pollard, and J. Condeelis, “Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging,” Nat. Protoc.6(10), 1500–1520 (2011).
[CrossRef] [PubMed]

Nature (3)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature396(6708), 239–242 (1998).
[CrossRef]

J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, “Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system,” Nature450(7166), 56–62 (2007).
[CrossRef] [PubMed]

K. Red-Horse, H. Ueno, I. L. Weissman, and M. A. Krasnow, “Coronary arteries form by developmental reprogramming of venous cells,” Nature464(7288), 549–553 (2010).
[CrossRef] [PubMed]

Neuron (1)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Opt. Express (5)

PLoS Biol. (1)

D. Cai, D. P. McEwen, J. R. Martens, E. Meyhofer, and K. J. Verhey, “Single molecule imaging reveals differences in microtubule track selection between Kinesin motors,” PLoS Biol.7(10), e1000216 (2009).
[CrossRef] [PubMed]

PLoS ONE (1)

M. Ducros, L. Moreaux, J. Bradley, P. Tiret, O. Griesbeck, and S. Charpak, “Spectral unmixing: analysis of performance in the olfactory bulb in vivo,” PLoS ONE4(2), e4418 (2009).
[CrossRef] [PubMed]

PLoS Pathog. (1)

M. Qian, D. Cai, K. J. Verhey, and B. Tsai, “A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection,” PLoS Pathog.5(6), e1000465 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

L. M. Davis and G. Shen, “Extension of multidimensional microscopy to ultrasensitive applications with maximum-likelihood analysis,” Proc. SPIE6443, 64430N, 64430N-12 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Science (2)

B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “The fluorescent toolbox for assessing protein location and function,” Science312(5771), 217–224 (2006).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Trends Cell Biol. (1)

J. Lippincott-Schwartz and G. H. Patterson, “Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging,” Trends Cell Biol.19(11), 555–565 (2009).
[CrossRef] [PubMed]

Other (2)

J. W. Boardman, “Inversion Of Imaging Spectrometry Data Using Singular Value Decomposition,” in Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing., 1989 International (1989), 2069–2072.
[CrossRef]

B. Kraus, M. Ziegler, and H. Wolff, Linear Fluorescence Unmixing in Cell Biological Research (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. M1-M5: mirrors, G = grating, CM = curved mirror, SLM = spatial light modulator, DM1 = 660DCXR dichroic mirror, DM2 = 595DCXR dichroic mirror, OBJ = 60x NA1.2 water immersion objective; SP = 650nm short pass filter.

Fig. 2
Fig. 2

Fluorescent protein spectra and selective excitations. (a) Two-photon brightness (dotted curves) and fluorescence emission spectra (solid curves) of mAmetrine, TagRFPt and mKate2 are plotted in green, orange, and red, respectively (adapted from ref [30]). We note that TagRFPt, which was used in this study, is known to have a very similar spectral response to TagRFP shown here [43, 45]. Normalized spectrum of the broadband Ti:Sa laser is plotted in black (long dashed curve). The 595DCXR dichroic mirror transform function is plotted in blue. (b) SHG signal from a β-BaBO4 crystal for a TL pulse (dashed line) and two selective two-photon excitations with SHG centered at 390 nm (blue phase-shaped pulse, blue solid line) and 410 nm (red phase-shaped pulse, red solid line).

Fig. 3
Fig. 3

Images of two-photon excitation of a mixed sample, in which each mammalian COS-7 cell only expresses one of either mAmetrine, TagRFPt or mKate2 fluorescent proteins. Cells were excited by the TL (left column), blue phase-shaped (middle column) and red phase-shaped (right column) pulses. Solid arrows, putative mAmetrine-expressing cells; open arrows, putative TagRFPt-expressing cells; solid arrowhead, putative mKate2-expressing cell. The TL pulses create higher image intensities than the shaped pulses do. To avoid saturation, lower PMT voltages have been applied to lower the fluorescence intensity of ~7 fold. Additionally, brightness and contrast of panels (a) and (b) have been scaled down ~10 fold to avoid saturation in display. Scale bar is 20 µm.

Fig. 4
Fig. 4

Linear unmixing. (a) Signal of mAmetrine, TagRFPt and mKate2 from Fig. 3 (middle and right columns) is restored in three separate images. (b) Pseudo-colored merge image of a sample co-expressing all three FPs after linear unmixing. In (a) and (b), mAmetrine, TagRFPt and mKate2 are pseudo-colored in blue, green and red in the merge image, respectively. Gamma correction (0.5) was applied to both panels in order to better present the dimly labeled cells. Scale bars are 20 µm.

Tables (1)

Tables Icon

Table 1 Constants quantifying the fractions of fluorophores intensity in observed images

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sg(ω) | E (2) (ω) | 2
E (2) (ω)= dω'| E(ω') || E(ωω') |exp{ i[ φ(ω')+φ(ωω') ] }
[ I blue,GREEN I blue,RED I red,GREEN ]= [ X A ^ X R ^ X K ^ Y A ^ Y R ^ Y K ^ Z A ^ Z R ^ Z K ^ ][ I A I R I K ]

Metrics