Abstract

We study energy transfer among an array of identical finite-width parallel-plate waveguides in close proximity, via evanescent wave coupling of broadband terahertz waves. We observe stronger coupling with larger plate separations and longer propagation paths. This work establishes a platform to investigate new opportunities for THz components and devices based on evanescent wave coupling.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. de Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics (Springer-Verlag, Berlin, 2001).
  2. R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).
  3. F. Mitschke, Fiber Optics: Physics and Technology (Springer-Verlag, Berlin, 2009).
  4. K. Kurokawa, An Introduction to the Theory of Microwave Circuits (Academic Press, New York, 1969).
  5. R. E. Collin, Foundations for Microwave Engineering (Wiley, 1992).
  6. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  7. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  8. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett.35(17), 2879–2881 (2010).
    [CrossRef] [PubMed]
  9. L. Ye, Y. Zhang, R. Xu, and W. Lin, “A terahertz broadband 3 dB directional coupler based on bridged PPDW,” Opt. Express19(20), 18910–18916 (2011).
    [CrossRef] [PubMed]
  10. J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Terahertz pipe-waveguide-based directional couplers,” Opt. Express19(27), 26883–26890 (2011).
    [CrossRef] [PubMed]
  11. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  12. R. Mendis and D. Grischowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett.11(11), 444–446 (2001).
    [CrossRef]
  13. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express18(9), 9643–9650 (2010).
    [CrossRef] [PubMed]
  14. J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98(23), 231113 (2011).
    [CrossRef]
  15. H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B28(3), 558–566 (2011).
    [CrossRef]
  16. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
    [CrossRef]
  17. D. Mittleman, Sensing with Terahertz Radiation (Springer).
  18. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
    [CrossRef]
  19. C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
    [CrossRef]
  20. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
    [CrossRef]
  21. A. L. Jones, “Coupling of optical fibers and scattering in fibers,” J. Opt. Soc. Am.55(3), 261–269 (1965).
    [CrossRef]
  22. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am.62(11), 1267–1277 (1972).
    [CrossRef]

2012 (1)

C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
[CrossRef]

2011 (4)

2010 (2)

2009 (2)

2007 (2)

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
[CrossRef]

2004 (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2001 (2)

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

R. Mendis and D. Grischowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett.11(11), 444–446 (2001).
[CrossRef]

1972 (1)

1965 (1)

Allard, J.-F.

Bang, O.

Berndsen, N.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

Chang, H.-C.

Chen, H.

Deibel, J. A.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

Dubois, C.

Dupuis, A.

Escarra, M.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

Fan, S.

Grischkowsky, D.

Grischowsky, D.

R. Mendis and D. Grischowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett.11(11), 444–446 (2001).
[CrossRef]

Hwang, Y.-J.

Jepsen, P. U.

Jones, A. L.

Lai, C.-H.

Leal-Sevillano, C. A.

C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
[CrossRef]

Lin, W.

Liu, J.

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98(23), 231113 (2011).
[CrossRef]

Lu, J.-T.

Mendis, R.

Mittleman, D. M.

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98(23), 231113 (2011).
[CrossRef]

H. Zhan, R. Mendis, and D. M. Mittleman, “Characterization of the terahertz near-field output of parallel-plate waveguides,” J. Opt. Soc. Am. B28(3), 558–566 (2011).
[CrossRef]

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express18(9), 9643–9650 (2010).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Montejo-Garai, J. R.

C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
[CrossRef]

Morris, D.

Nielsen, K.

Rasmussen, H. K.

Rebollar, J. M.

C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
[CrossRef]

Ruiz-Cruz, J. A.

C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
[CrossRef]

Skorobogatiy, M.

Snyder, A. W.

Stoeffler, K.

Sun, C.-K.

Tsai, Y.-F.

Tseng, T.-F.

Veronis, G.

Wang, K.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Xu, R.

Ye, L.

Zhan, H.

Zhang, Y.

Appl. Phys. Lett. (1)

J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98(23), 231113 (2011).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett.11(11), 444–446 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (2)

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-element method simulations of guided wave phenomena at terahertz frequencies,” Proc. IEEE95(8), 1624–1640 (2007).
[CrossRef]

Radio Sci. (1)

C. A. Leal-Sevillano, J. A. Ruiz-Cruz, J. R. Montejo-Garai, and J. M. Rebollar, “Rigorous analysis of the parallel plate waveguide: From the transverse electromagnetic mode to the surface plasmon polariton,” Radio Sci.47(6), RS0N02 (2012).
[CrossRef]

Other (6)

D. Mittleman, Sensing with Terahertz Radiation (Springer).

F. de Fornel, Evanescent Waves from Newtonian Optics to Atomic Optics (Springer-Verlag, Berlin, 2001).

R. Syms and J. Cozens, Optical Guided Waves and Devices (McGraw-Hill, London, 1992).

F. Mitschke, Fiber Optics: Physics and Technology (Springer-Verlag, Berlin, 2009).

K. Kurokawa, An Introduction to the Theory of Microwave Circuits (Academic Press, New York, 1969).

R. E. Collin, Foundations for Microwave Engineering (Wiley, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of finite-width PPWG array with the orange circle illustrating the THz beam spot on the input facet of the central waveguide. (a) Transverse cross section of array with dimensions: width w = 2 mm, gap g = 2 mm, and variable plate separation b. The output field is measured along the horizontal dashed line in steps of 0.5mm. (b) Experimental design of array from two machined Al plates showing length L in the propagation direction and depth d = 18 mm to Al back plate. Arrays with various values of L = 5, 10, 15, 20, 25, 30, 40 and 50 cm are studied.

Fig. 2
Fig. 2

(a) Electric field maps of frequency versus x-position across array. Red dashed line indicates frequency slice analyzed in Fig. 1(b). Each frame shows frequencies of 10 – 300 GHz and is normalized to maximum value. The peak in the spectral amplitude at ~150 GHz reflects the spectral content of the input pulse. (b) Frequency slice at f = 125 GHz of L = 30 cm, b = 1 mm device showing experimental data (black line) and Gaussian fits (red lines). The vertical grey bars indicate the locations of waveguides in the array.

Fig. 3
Fig. 3

Power ratios extracted from experimental data (data points and solid lines) as described in the text, along with FEM simulations (dashed lines). Stronger coupling is observed for larger plate separations and longer propagation path lengths.

Fig. 4
Fig. 4

Full-width-at-half-maximum (FWHM) of Gaussian fits to experimental data at f = 125 GHz where the average FWHM is displayed for each plate separation. From lowest to highest plate separation, the FWHM increases as plate separation increases, indicating a change of the spatial intensity profile. The trend with b is clear; however, variations in FWHM with propagation length may be due to alignment issues or other experimental uncertainty.

Fig. 5
Fig. 5

Electric field maps of frequency for various propagation lengths (L) at a fixed plate separation b = 1 mm, each frame showing frequencies of 10 – 300 GHz. Each plot is normalized to its maximum value. As in Fig. 2(a), the spectral maximum at about 150 GHz corresponds to the peak of the spectrum of the input pulse.

Fig. 6
Fig. 6

Coupling coefficient (C) versus wavelength for given plate separations. Shaded regions demark boarders of operational frequencies from about 50 GHz (6 mm) to 200 GHz (1.5 mm).

Metrics