Abstract

A novel liquid crystal on silicon (LCOS)-based wavelength selective switch (WSS) is proposed, fabricated, and demonstrated. It employs a multilayered arrayed waveguide grating (AWG) as a wavelength multiplex/demultiplexer. The LCOS deflects spectrally decomposed beams channel by channel and switches them to desired waveguide layers of the multilayered AWG. In order to obtain the multilayered AWG with high yield, phase errors of the AWG is externally compensated for by an additional phase modulation with the LCOS. This additional phase modulation is applied to the equivalent image of the facet of the AWG, which is projected by a relay lens. In our previously-reported WSS configuration, somewhat large footprint and increased cost were the drawbacks, since two LCOSs were required: one LCOS was driven for the inter-port switching operation, and the other was for the phase-error compensation. In the newly proposed configuration, on the other hand, both switching and compensation operations are performed using a single LCOS. This reduction of the component count is realized by introducing the folded configuration with a reflector. The volume of the WSS optics is 80 × 100 × 60 mm3, which is approximately 40% smaller than the previous configuration. The polarization-dependent loss and inter-channel crosstalk are less than 1.5 dB and −21.0 dB, respectively. An error-free transmission of 40-Gbit/s NRZ-OOK signal through the WSS is successfully demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM Colorless, Directionless, and Contentionless (CDC) Features on Optical Network Performance,” J. Opt. Commun. Netw.4(11), B58–B67 (2012).
    [CrossRef]
  2. S. Poole, S. Frisken, M. Roelens, and C. Cameron, “Bandwidth-flexible ROADMs as Network Elements” Proc. OFC/NFOEC 2011, OTuE1 (Los Angeles, USA, 2011).
  3. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol.26(1), 73–78 (2008).
    [CrossRef]
  4. Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
    [CrossRef]
  5. D. M. Marom, D. T. Neilson, D. S. Greywall, C.-S. Pai, N. R. Basavanhally, V. A. Aksyuk, D. O. López, F. Pardo, M. E. Simon, Y. Low, P. Kolodner, and C. A. Bolle, “Wavelength-selective 1 × K Switches Using Free-Space Optics and MEMS Micromirrors: Theory, Design, and Implementation,” J. Lightwave Technol.23(4), 1620–1630 (2005).
    [CrossRef]
  6. D. M. Marom, C. R. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, and L. Gomez, “Hybrid Free-space and Planer Lightwave Circuit Wavelength-selective 1x3 Switch with Integrated Drop-side Demultiplexer” Proc. ECOC 2009, PD1.9 (Vienna, Austria, 2009).
  7. P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS Switching Engine Technologies” Proc. OFC/NFOEC 2008, OWC1 (San Diego, USA, 2008).
  8. D. Sinefeld and D. M. Marom, “Insertion Loss and Crosstalk Analysis of a Fiber Switch Based on a Pixelized Phase Modulator,” J. Lightwave Technol.29(1), 69–77 (2011).
    [CrossRef]
  9. K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “A Compact High-Port-Count Wavelength Selective Switch Using LCOSs and a Multi-Stacked AWG” Proc. 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (LEOS)2008, TuCC2 (Newport Beach, USA, 2008).
  10. K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Design of a Wavelength Selective Switch Using an LCOS and a Multi-stacked AWG Fabricated on Wedge-shaped Substrates” Proc. International Topical Meeting on Information Photonics (IP)2008, 3-4 (Awaji, Japan, 2008).
  11. K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).
  12. K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Polarization Insensitive Wavelength Selective Switch Using LCOSs and Monolithically Integrated Multi-layered AWG” Proc. 15th OptoElectronics and Communications Conference (OECC), 6E2–4 (Sapporo, Japan, 2010).
  13. K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “1×6 Multicasting Operation in an LCOS-and-AWG-based Wavelength Selective Switch” Proc. 1st International Symposium on Access Spaces (IEEE-ISAS), GS3-B-3 (Yokohama, Japan, 2011).
  14. K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
    [CrossRef]
  15. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
    [CrossRef]
  16. U. Efron, B. Apter, and E. Bahat-Treidel, “Fringing-field Effect in Liquid-crystal Beam-steering Devices: an Approximate Analytical Model,” J. Opt. Soc. Am. A21(10), 1996–2008 (2004).
    [CrossRef]
  17. K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
    [CrossRef]

2012 (1)

2011 (3)

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

D. Sinefeld and D. M. Marom, “Insertion Loss and Crosstalk Analysis of a Fiber Switch Based on a Pixelized Phase Modulator,” J. Lightwave Technol.29(1), 69–77 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

2010 (1)

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

2008 (1)

2005 (1)

2004 (1)

2000 (1)

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Abakoumov, D.

Abe, M.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Aksyuk, V. A.

Apter, B.

Bahat-Treidel, E.

Basavanhally, N. R.

Baxter, G.

Bolger, J. A.

Bolle, C. A.

Efron, U.

Eggleton, B. J.

Frisken, S.

Gao, L.

Greywall, D. S.

Hasama, T.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Hotta, Y.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Ishii, M.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Ishikawa, H.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Kawashima, H.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Kawasugi, M.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Khan, M. D. S.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Kintaka, K.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Kolodner, P.

Li, Y.

López, D. O.

Low, Y.

Marom, D. M.

Michihata, S.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Mori, M.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Neilson, D. T.

Oguri, H.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Okamoto, K.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Pai, C.-S.

Pardo, F.

Peng, L.

Poole, S.

Roelens, M. A. F.

Sakurai, Y.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Shen, G.

Simon, M. E.

Sinefeld, D.

Sorimoto, K.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Takada, K.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Takeuchi, K.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Tanaka, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Tsuda, H.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Uehara, N.

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

Uetsuka, H.

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

Yanagisawa, T.

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

Electron. Lett. (1)

K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, “Beam-Adjustment-Free Crosstalk Reduction in 10 GHz-spaced Arrayed-Waveguide Grating via Photosensitivity under UV Laser Irradiation through Metal Mask,” Electron. Lett.36(1), 60–61 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Sakurai, M. Kawasugi, Y. Hotta, M. D. S. Khan, H. Oguri, K. Takeuchi, S. Michihata, and N. Uehara, “LCOS-Based Wavelength Blocker Array with Challel-by-Channel Variable Center Wavelength and Bandwidth,” IEEE Photon. Technol. Lett.23(14), 989–991 (2011).
[CrossRef]

IEICE Electron. Express (2)

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Fast Aberration-Correcting Algorithm for an SLM-based Optical Switch,” IEICE Electron. Express7(23), 1728–1734 (2010).
[CrossRef]

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “Phase Error Compensation for Multilayered AWG in LCOS-based WSS,” IEICE Electron. Express8(24), 2054–2060 (2011).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. A (1)

Other (8)

S. Poole, S. Frisken, M. Roelens, and C. Cameron, “Bandwidth-flexible ROADMs as Network Elements” Proc. OFC/NFOEC 2011, OTuE1 (Los Angeles, USA, 2011).

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “A Compact High-Port-Count Wavelength Selective Switch Using LCOSs and a Multi-Stacked AWG” Proc. 21st Annual Meeting of the IEEE Lasers & Electro-Optics Society (LEOS)2008, TuCC2 (Newport Beach, USA, 2008).

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Design of a Wavelength Selective Switch Using an LCOS and a Multi-stacked AWG Fabricated on Wedge-shaped Substrates” Proc. International Topical Meeting on Information Photonics (IP)2008, 3-4 (Awaji, Japan, 2008).

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Demonstration of a Wavelength Selective Switch Using an LCOS and a Stacked Arrayed Waveguide Grating” Proc. ECOC 2009, P2.04 (Vienna, Austria, 2009).

K. Sorimoto, H. Tsuda, H. Ishikawa, T. Hasama, H. Kawashima, K. Kintaka, M. Mori, and H. Uetsuka, “Polarization Insensitive Wavelength Selective Switch Using LCOSs and Monolithically Integrated Multi-layered AWG” Proc. 15th OptoElectronics and Communications Conference (OECC), 6E2–4 (Sapporo, Japan, 2010).

K. Sorimoto, K. Kintaka, H. Kawashima, M. Mori, T. Hasama, H. Ishikawa, H. Tsuda, and H. Uetsuka, “1×6 Multicasting Operation in an LCOS-and-AWG-based Wavelength Selective Switch” Proc. 1st International Symposium on Access Spaces (IEEE-ISAS), GS3-B-3 (Yokohama, Japan, 2011).

D. M. Marom, C. R. Doerr, M. Cappuzzo, E. Chen, A. Wong-Foy, and L. Gomez, “Hybrid Free-space and Planer Lightwave Circuit Wavelength-selective 1x3 Switch with Integrated Drop-side Demultiplexer” Proc. ECOC 2009, PD1.9 (Vienna, Austria, 2009).

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS Switching Engine Technologies” Proc. OFC/NFOEC 2008, OWC1 (San Diego, USA, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Representative configurations of WSSs: (a) conventional structure employing a bulk-grating; (b) employing a multilayered AWG, where each waveguide layer is fabricated on separate substrate; and (c) employing a multilayered AWG, where each waveguide layer is monolithically fabricated on a common substrate. The dotted circles and ellipses in the figures indicate the profiles of the lights.

Fig. 2
Fig. 2

Schematic configurations of (a) previously-reported WSS employing two LCOSs, and (b) proposed WSS driven by a single LCOS.

Fig. 3
Fig. 3

x-z sectional view of the WSS, and optical behaviors in phase error compensation operation. The rays colored red, green, and blue indicate the optical paths of different wavelength components.

Fig. 4
Fig. 4

Optical behaviors in the WSS with folded configuration: (a) y-z sectional view of the proposed WSS driven by a single LCOS employing folded configuration. (d) x-y view of the LCOS and beam profiles on it.

Fig. 5
Fig. 5

Calculated port count of the WSS as a function of Dport and ω0y, when A = 0.96, θmax = 0.7 °, and HC = 5.7 mm.

Fig. 6
Fig. 6

Ray-tracing results with optimized WSS design with Nport = 10: (a) Enlarged view between Lens-1 and Lens-2'; (b) enlarged view near the plane-B on the LCOS; and (c) enlarged view near the HWP. The blue lines indicate the optical paths where the optical energy is higher than 0.278 times to the peak-power in each path. The optical paths with all the switching states and with both polarization modes are overlaid.

Fig. 7
Fig. 7

Calculation model and result of the spectrum of the WSS. (a) Phase modulation pattern model. (b) Calculated 3-dB pass bandwidth when σ is set to be 100GHz

Fig. 8
Fig. 8

Monolithic fabrication of multilayered AWG. (a) Procedure for fabrication. (b) Photograph of the fabricated AWG with two waveguide layers.

Fig. 9
Fig. 9

Measured spectral response of the fabricated double-layered AWG: (a) AWG in the bottom layer (Layer-1); and (b) AWG in the top layer (Layer-2). The power difference between the black solid and the red broken curves indicates the PDL.

Fig. 10
Fig. 10

Photograph of the assembled WSS prototype. The blue broken arrow indicates the optical path when the beam-splitting operation by the PBS is neglected.

Fig. 11
Fig. 11

Phase-error compensation scheme with the WSS. The calibration flow for x-polarization input light is illustrated. ϕ1, x and ϕ2, y, were optimized with the PSO-based algorithm to increase the output power. When we calibrated for the y-polarization input light, ϕ2, x and ϕ1, y were optimized.

Fig. 12
Fig. 12

Measured WSS spectra in interleaving operation when the channel spacing is set to 200 GHz: (a) without phase error compensation; and (b) with phase error compensation. The blue curves show the results when the odd channels were transmitted and the even channels were blocked, and the green curves vice versa show the results when the even channels were transmitted and the odd channels were blocked. The power differences between the solid and the broken curves indicate the PDL.

Fig. 13
Fig. 13

Measured spectra of the WSS under flexible grid operations. The allocated bandwidth for a channel σ ranged from 100 to 200 GHz, incrementing by 25 GHz.

Fig. 14
Fig. 14

Experimental setup for signal transmission through the WSS.

Fig. 15
Fig. 15

Experimental results of 40-Gbit/s NRZ-OOK signal transmission through the WSS, where σ was set to 100 GHz. (a) BER characteristics against the OSNR at the receiver, and (b) eye diagrams measured at the OSNR of 23.4 dB. These results were measured under two conditions: (i) back to back transmission; and (ii) through the WSS.

Tables (3)

Tables Icon

Table 1 Target Performances of the WSS.

Tables Icon

Table 2 Designed parameters for WSS components.

Tables Icon

Table 3 Estimated loss attributions of the WSS.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ω Cy = 4 F 1y λ π ω 0y 4 F 1y λ c π ω 0y ,
A ω Cy = H C ,
N port =floor[ 2 F 1y θ max D port ] ,
N port =floor[ π H C θ max 2A λ c ω 0y D port ] .
m< λ c /Δ λ Range ,
x f (λ)=(m/ d array ) F 1x (λ λ c ) ,
W ch (σ) x f {λ+(σ/c) λ 2 /2} x f {λ(σ/c) λ 2 /2} (m/ d array ) F 1x (σ/c) λ c 2 ,
ω Cx = 4 F 1x λ π ω 0x = 4 F 1x λ c π(B N array d array ) ,
A(x,λ)=exp[ 4 { x x f (λ) ω Cx } 2 ] ,
S(λ,σ) | W ch (σ)/2 W ch (σ)/2 A 2 (x,λ)dx | 2 { A 2 (x,λ)dx } 2 [ 1 2 erf{ 8 W ch (σ) ω Cx ( 1 2 λ λ c (σ/c) λ c 2 ) }+ 1 2 erf{ 8 W ch (σ) ω Cx ( 1 2 + λ λ c (σ/c) λ c 2 ) } ] 2 .
W ch (σ) ω Cx = πB λ c σ 4c m N array .
w(m/ d array ) F 1x (Δν/c) λ c 2 .
ϕ layer,pol (x)=2π n=1 n max a layer,pol,n L n (x) , with( L 1 (x)=x/R, L 2 (x)= 1 2 { 3 (x/R) 2 1 }, L 3 (x)= 1 2 { 5 (x/R) 3 3x/R }, L 4 (x)= 1 8 { 35 (x/R) 4 30 (x/R) 2 +3 } ).

Metrics