Abstract

We present supercontinua generated in LiF and CaF2 revealing that LiF is advantageous especially in the near UV region since it pushes the cut-off wavelength about 17 nm towards lower wavelengths and the occurrence of color centers, which has been considered as a drawback up to now, is not a limitation for its applicability in femtosecond transient absorption spectroscopy. Even though the color centers occur within a short time of illumination, they do not influence the supercontinuum generation significantly and they can furthermore, if desired, be eliminated from the substrate simply by heating. Thus LiF is a promising substrate for broad band measurements in the UV/vis range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24, 592–594 (1970).
    [CrossRef]
  2. R. Fork, C. Shank, C. Hirlimann, R. Yen, and W. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett.8, 1–3 (1983).
    [CrossRef] [PubMed]
  3. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57, 2268–2271 (1986).
    [CrossRef] [PubMed]
  4. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999).
    [CrossRef]
  5. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007).
    [CrossRef]
  6. S. L. Chin, Femtosecond Laser Filamentation(Springer, 2010).
    [CrossRef]
  7. R. R. Alfano, The Supercontinuum Laser Source(Springer, 2006).
    [CrossRef]
  8. V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
    [CrossRef]
  9. A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
    [CrossRef]
  10. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B97, 561–574 (2009).
    [CrossRef]
  11. A. Ritucci, G. Tomassetti, A. Reale, L. Arrizza, P. Zuppella, L. Reale, L. Palladino, F. Flora, F. Bonfigli, A. Faenov, T. Pikuz, J. Kaiser, J. Nilsen, and A. F. Jankowski, “Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam,” Opt. Lett.31, 68–70 (2006).
    [CrossRef] [PubMed]
  12. P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV-VIS,” Opt. Commun.203, 107–113 (2002).
    [CrossRef]
  13. N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
    [CrossRef]
  14. D. V. Martyshkin, A. V. Fedorov, A. Arumugam, D. J. Hilton, V. V. Fedorov, and S. B. Mirov, “Mid-IR volumetric Bragg grating based on LiF color center crystal,” Opt. Mater. Express2, 1209–1218 (2012).
    [CrossRef]
  15. S. Andersson and G. Bäckström, “Thermal conductivity and heat capacity of single-crystal LiF and CaF2under hydrostatic pressure,” J. Phys. C: Solid State Phys.20, 5951–5962 (1987).
    [CrossRef]
  16. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5, 329–528 (1976).
    [CrossRef]
  17. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt.2, 1103–1107 (1963).
    [CrossRef]
  18. D. Milam, M. J. Weber, and A. J. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett.31, 822–825 (1977).
    [CrossRef]

2012 (1)

2009 (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007).
[CrossRef]

2006 (1)

2003 (1)

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

2002 (1)

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV-VIS,” Opt. Commun.203, 107–113 (2002).
[CrossRef]

1999 (1)

1998 (2)

N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

1987 (1)

S. Andersson and G. Bäckström, “Thermal conductivity and heat capacity of single-crystal LiF and CaF2under hydrostatic pressure,” J. Phys. C: Solid State Phys.20, 5951–5962 (1987).
[CrossRef]

1986 (1)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57, 2268–2271 (1986).
[CrossRef] [PubMed]

1983 (1)

1977 (1)

D. Milam, M. J. Weber, and A. J. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett.31, 822–825 (1977).
[CrossRef]

1976 (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5, 329–528 (1976).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24, 592–594 (1970).
[CrossRef]

1963 (1)

Akozbek, N.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24, 592–594 (1970).
[CrossRef]

R. R. Alfano, The Supercontinuum Laser Source(Springer, 2006).
[CrossRef]

Andersson, S.

S. Andersson and G. Bäckström, “Thermal conductivity and heat capacity of single-crystal LiF and CaF2under hydrostatic pressure,” J. Phys. C: Solid State Phys.20, 5951–5962 (1987).
[CrossRef]

Arrizza, L.

Arumugam, A.

Bäckström, G.

S. Andersson and G. Bäckström, “Thermal conductivity and heat capacity of single-crystal LiF and CaF2under hydrostatic pressure,” J. Phys. C: Solid State Phys.20, 5951–5962 (1987).
[CrossRef]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Becker, A.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Bonfigli, F.

Bouchaala, N.

N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
[CrossRef]

Bowden, C.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Brodeur, A.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

Buchvarov, I.

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV-VIS,” Opt. Commun.203, 107–113 (2002).
[CrossRef]

Chin, S.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Chin, S. L.

A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B16, 637–650 (1999).
[CrossRef]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

S. L. Chin, Femtosecond Laser Filamentation(Springer, 2010).
[CrossRef]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57, 2268–2271 (1986).
[CrossRef] [PubMed]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007).
[CrossRef]

Faenov, A.

Fedorov, A. V.

Fedorov, V. V.

Fiebig, T.

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV-VIS,” Opt. Commun.203, 107–113 (2002).
[CrossRef]

Flora, F.

Fork, R.

Glass, A. J.

D. Milam, M. J. Weber, and A. J. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett.31, 822–825 (1977).
[CrossRef]

Golubtsov, I.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Hilton, D. J.

Hirlimann, C.

Jankowski, A. F.

Kaiser, J.

Kandidov, V.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Kosareva, O.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Kotomin, E.

N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
[CrossRef]

Kuzovkov, V.

N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5, 329–528 (1976).
[CrossRef]

Liu, W.

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

Malitson, I. H.

Martyshkin, D. V.

Milam, D.

D. Milam, M. J. Weber, and A. J. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett.31, 822–825 (1977).
[CrossRef]

Mirov, S. B.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007).
[CrossRef]

Nilsen, J.

Palladino, L.

Pikuz, T.

Reale, A.

Reale, L.

Reichling, M.

N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
[CrossRef]

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Ritucci, A.

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57, 2268–2271 (1986).
[CrossRef] [PubMed]

Shank, C.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24, 592–594 (1970).
[CrossRef]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57, 2268–2271 (1986).
[CrossRef] [PubMed]

Tomassetti, G.

Tomlinson, W.

Tzankov, P.

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV-VIS,” Opt. Commun.203, 107–113 (2002).
[CrossRef]

Weber, M. J.

D. Milam, M. J. Weber, and A. J. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett.31, 822–825 (1977).
[CrossRef]

Yen, R.

Zuppella, P.

Appl. Opt. (1)

Appl. Phys. B (2)

V. Kandidov, O. Kosareva, I. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. Bowden, and S. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B77, 149–165 (2003).
[CrossRef]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B97, 561–574 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

D. Milam, M. J. Weber, and A. J. Glass, “Nonlinear refractive index of fluoride crystals,” Appl. Phys. Lett.31, 822–825 (1977).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. C: Solid State Phys. (1)

S. Andersson and G. Bäckström, “Thermal conductivity and heat capacity of single-crystal LiF and CaF2under hydrostatic pressure,” J. Phys. C: Solid State Phys.20, 5951–5962 (1987).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data5, 329–528 (1976).
[CrossRef]

Opt. Commun. (1)

P. Tzankov, I. Buchvarov, and T. Fiebig, “Broadband optical parametric amplification in the near UV-VIS,” Opt. Commun.203, 107–113 (2002).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441, 47–189 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24, 592–594 (1970).
[CrossRef]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett.57, 2268–2271 (1986).
[CrossRef] [PubMed]

A. Brodeur and S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett.80, 4406–4409 (1998).
[CrossRef]

Solid State Commun. (1)

N. Bouchaala, E. Kotomin, V. Kuzovkov, and M. Reichling, “F center aggregation kinetics in low-energy electron irradiated LiF,” Solid State Commun.108, 629–633 (1998).
[CrossRef]

Other (2)

S. L. Chin, Femtosecond Laser Filamentation(Springer, 2010).
[CrossRef]

R. R. Alfano, The Supercontinuum Laser Source(Springer, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: L1 and L2 lenses, BS: beam splitter, subst: LiF or CaF2, CC: cosine corrector.

Fig. 2
Fig. 2

Spectra of a SC generated in CaF2 (gray curve), new LiF (black curve) and LiF after four hours of continuous usage (dotted curve). The SC spectrum of the new LiF substrate is nearly in congruence to the one after 4 hours of continuous usage where color centers are already clearly apparent. The spectra were smoothed with a Savitzky-Golay algorithm.

Fig. 3
Fig. 3

Absorption spectrum of a LiF substrate containing color centers (black curve) and after heating to 400 °C for two hours (red curve). The inset shows a picture of the LiF substrate after four hours of continuous usage. The yellowish color is due to the absorption of the M-centers whereas the rectangular shape is due to the two dimensional translation of the material.

Fig. 4
Fig. 4

LiF substrate after moving the focal point to different depths within the material with 6 μJ pulse energy (I–III) and with 15 μJ (IV). For clarification the color centers where highlighted in (b). During SC generation the substrate was moved only in y-direction.

Tables (1)

Tables Icon

Table 1 Summary of parameters influencing the SC generation. Egap: band gap, κ: thermal conductivity, n: refractive index, n2: nonlinear refractive index, Pth: threshold power for SC generation, λco: cut-off wavelength.

Metrics