Abstract

We investigate the performances of a silicon PN-junction Mach-Zehnder modulator for analog application. The slope efficiency and spurious-free dynamic range (SFDR) of such a modulator upon carrier depletion and carrier injection effects are characterized and compared. Input RF frequency-dependence measurements show that the depletion-type modulator is usually with ~20 dB∙Hz2/3 higher SFDR comparing to the injection-type modulator, yet with an order-of-magnitude lower slope efficiency. For the depletion-type and injection-type modulators, the measured maximum SFDRs are respectively ~95 dB∙Hz2/3 and 75 dB∙Hz2/3, with maximum slope efficiency of 0.3 V−1 and 8 V−1. We numerically model the SFDR by using the experimentally extracted effective refractive index change, which shows good agreement with the measurements.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  2. C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge Univ. Press, 2004).
  3. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
    [CrossRef]
  4. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  5. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  6. R. A. Soref and B. R. Bennet, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  7. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  8. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  9. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
    [CrossRef]
  10. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 14V-cm V_πL integrated on 025μm silicon-on-insulator waveguides,” Opt. Express18(8), 7994 (2010).
    [CrossRef]
  11. N.-N. Feng, S. Liao, D. Feng, D. P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express18, 7994–7999 (2010).
  12. X. Tu, T.-Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express19(19), 18029–18035 (2011).
    [CrossRef] [PubMed]
  13. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
    [CrossRef] [PubMed]
  14. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012).
    [CrossRef] [PubMed]
  15. F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
    [CrossRef]
  16. X. Luo, X. Tu, J. Song, T. Y. Liow, Q. Fang, P. H. Lim, Y. Xiong, M. Yu, and G. Q. Lo, “Characterization of silicon electro-optical modulators for microwave photonic links,” in Proc. 2011 IEEE MWP, 109–112 (2011).
  17. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012).
    [CrossRef] [PubMed]
  18. M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
    [CrossRef]
  19. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
    [CrossRef]
  20. B. Liu, J. Shim, Y. Chiu, A. Keating, J. Piprek, and J. Bowers, “Analog characterization of low-voltage MQW traveling-wave electroabsorption modulators,” J. Lightwave Technol.21(12), 3011–3019 (2003).
    [CrossRef]

2012 (3)

2011 (1)

2010 (5)

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 14V-cm V_πL integrated on 025μm silicon-on-insulator waveguides,” Opt. Express18(8), 7994 (2010).
[CrossRef]

N.-N. Feng, S. Liao, D. Feng, D. P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express18, 7994–7999 (2010).

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
[CrossRef]

2007 (4)

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

2006 (3)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2003 (1)

1987 (1)

R. A. Soref and B. R. Bennet, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Ansheng Liu,

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Asghari, M.

Ayazi, A.

Baehr-Jones, T.

Basak, J.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Beausoleil, R. G.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
[CrossRef]

Bennet, B. R.

R. A. Soref and B. R. Bennet, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Bouville, D.

Bowers, J.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Cassan, E.

Chen, L.

Chen, Y.-K.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Chiu, Y.

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Crozat, P.

Cunningham, J. E.

Devenport, J.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

Dong, D. P.

Dong, P.

Fathpour, S.

Fédéli, J.-M.

Feng, D.

Feng, N.-N.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Green, W. M.

Hochberg, M.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Jalali, B.

Karim, A.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

Keating, A.

Krishnamoorthy, A. V.

Li, G.

Liang, H.

Liao, L.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Liao, S.

Lim, A. E.-J.

Ling Liao, M.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Liow, T.-Y.

Liu, A.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Liu, B.

Liu, Y.

Lo, G. Q.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Mirshafiei, M.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Paniccia,

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Paniccia, M.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Piprek, J.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Rasigade, G.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Rooks, M. J.

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Rusch, L. A.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Sekaric, L.

Shafiiha, R.

Shim, J.

Song, J.

Song, M.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
[CrossRef]

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennet, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Tu, X.

Vacondio, F.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

Willner, A. E.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
[CrossRef]

Yu, M.

Zhang, L.

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
[CrossRef]

Zheng, D.

Ziebell, M.

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennet, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

M. Song, L. Zhang, R. G. Beausoleil, and A. E. Willner, “Nonlinear distortion in a silicon microring-based electro-optical modulator for analog optical links,” IEEE J. Sel. Top. Quantum Electron.16(1), 185–191 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Opt. Express (7)

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 14V-cm V_πL integrated on 025μm silicon-on-insulator waveguides,” Opt. Express18(8), 7994 (2010).
[CrossRef]

N.-N. Feng, S. Liao, D. Feng, D. P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides,” Opt. Express18, 7994–7999 (2010).

X. Tu, T.-Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express19(19), 18029–18035 (2011).
[CrossRef] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012).
[CrossRef] [PubMed]

M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
[CrossRef] [PubMed]

A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012).
[CrossRef] [PubMed]

Other (2)

X. Luo, X. Tu, J. Song, T. Y. Liow, Q. Fang, P. H. Lim, Y. Xiong, M. Yu, and G. Q. Lo, “Characterization of silicon electro-optical modulators for microwave photonic links,” in Proc. 2011 IEEE MWP, 109–112 (2011).

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge Univ. Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The normalized transmission spectra of (a) depletion-type and (b) injection-type modulator upon different DC bias voltages.

Fig. 2
Fig. 2

The measured phase changes upon different biased voltages for (a) depletion-type modulator and (b) injection-type modulator. The calculated effective refractive index change is also illustrated with 3rd-order polynomial fitting. The lines are the polynomial fitting curves. The green dash-dotted lines indicate the half-wave voltage changes.

Fig. 3
Fig. 3

Measured optical intensity and the extracted DC slope efficiency of (a) depletion-type and (b) injection-type modulator as functions of the DC bias voltages. Insert: The wavelength-dependence slope efficiency at fixed bias voltages for both (a) depletion-type and (b) injection-type modulators.

Fig. 4
Fig. 4

Block diagram of the two-tone measurement setup. EDFA: erbium-doped fiber amplifier, BPF: bandpass filter; PC: polarization controller, DUT: device under test, PD: photodiode.

Fig. 5
Fig. 5

(a)-(b) The measured RF output power as function of input RF power for (a) depletion-type and (b) injection-type modulators with f1 = 500 MHz center frequency and Δf = 1 MHz. (c)-(d) The modeled RF output power as function of input RF power for (c) depletion-type and (d) injection-type modulator.

Fig. 6
Fig. 6

The measured (solid squares and circles) and modeled (opened squares and circles) SFDRs depending on the RF frequency for both depletion-type and injection-type modulators.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P out = P in 2 [1+cos( ϕ 0 +Δϕ)]
Δϕ=2π Δ n eff L λ
Δ n eff = n g ΔL L Δλ λ
n g = λ 2 FSRΔL
Δ n eff (t)= P 0 + P 1 V(t)+ P 2 V 2 (t)+ P 3 V 3 (t)+O(V)
V(t)= V o1 sin(2π f 1 t)+ V o2 sin[2π( f 1 +Δf)t]

Metrics