Abstract

In-line rainbow trapping is demonstrated in an optical microfiber with a plasmonic grating. The dispersions of x- and y-polarized surface plasmon polariton (SPP) modes are analyzed in detail by the 3D finite element method (FEM). In this system, the incident light is coupled from an optical microfiber into a graded grating. The plasmonic structure shows strong localization as the dispersion curve approaches cut-off frequency. Gradually increasing the depth or width of the grating elements ensures that the cut-off frequency of the SPP mode varies with the position along the microfiber. Near-infrared light at different frequencies can be trapped in different spatial positions. The in-line rainbow trapping is important for potential applications including optical storage, slow light, optical switch and enhanced light-matter interactions in fiber integrated devices and highly integrated optical circuits.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  2. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
    [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  4. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  8. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  9. Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [CrossRef] [PubMed]
  10. Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
    [CrossRef]
  11. G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
    [CrossRef]
  12. Q. Gan and F. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
    [CrossRef]
  13. H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
    [CrossRef] [PubMed]
  14. L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
    [CrossRef]
  15. L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
    [CrossRef]
  16. G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
    [CrossRef] [PubMed]
  17. Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett. 25(5), 410–413 (2013).
    [CrossRef]
  18. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  19. G. Brambilla, F. Xu, P. Horak, Y. M. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
    [CrossRef]
  20. L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [CrossRef]
  21. Y. M. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [CrossRef] [PubMed]
  22. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [CrossRef]
  23. M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
    [CrossRef]
  24. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [CrossRef] [PubMed]
  25. M. Ding, M. N. Zervas, and G. Brambilla, “Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips,” Appl. Phys. Lett. 102(14), 141110 (2013).
    [CrossRef]
  26. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
    [CrossRef] [PubMed]
  27. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
    [CrossRef] [PubMed]
  28. W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
    [CrossRef]
  29. J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
    [CrossRef] [PubMed]
  30. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  31. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).
  32. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
    [CrossRef]

2013 (3)

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett. 25(5), 410–413 (2013).
[CrossRef]

M. Ding, M. N. Zervas, and G. Brambilla, “Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips,” Appl. Phys. Lett. 102(14), 141110 (2013).
[CrossRef]

2012 (4)

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[CrossRef]

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
[CrossRef] [PubMed]

G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[CrossRef]

2011 (6)

Q. Gan and F. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[CrossRef]

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[CrossRef]

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[CrossRef]

J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011).
[CrossRef] [PubMed]

M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
[CrossRef] [PubMed]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[CrossRef] [PubMed]

2010 (2)

J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[CrossRef]

2009 (4)

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Y. M. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, P. Horak, Y. M. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
[CrossRef]

2008 (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

2007 (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

2005 (5)

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1983 (1)

Alexander, R. W.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Bartoli, F.

Q. Gan and F. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[CrossRef]

Bartoli, F. J.

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Brambilla, G.

Chang-Hasnain, C. J.

Chen, L.

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[CrossRef]

Chen, Y.

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Cui, T. J.

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[CrossRef]

Ding, M.

M. Ding, M. N. Zervas, and G. Brambilla, “Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips,” Appl. Phys. Lett. 102(14), 141110 (2013).
[CrossRef]

M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
[CrossRef] [PubMed]

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[CrossRef]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Feng, J.

Feng, X.

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gan, Q.

Q. Gan and F. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[CrossRef]

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Gan, Q. Q.

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[CrossRef]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gong, Y. K.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
[CrossRef] [PubMed]

Guo, X.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Horak, P.

Hu, H. F.

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

Ji, D. X.

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Jung, Y. M.

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

Koizumi, F.

Kou, J. L.

Koukharenko, E.

Ku, P. C.

Lee, T.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[CrossRef]

Liu, K.

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

Liu, X. M.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
[CrossRef] [PubMed]

G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[CrossRef]

Liu, Y.

Long, L. L.

Lou, J. Y.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, H.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
[CrossRef] [PubMed]

G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[CrossRef]

Lu, Y. Q.

Luo, W.

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Meng, C.

Murugan, G. S.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Ordal, M. A.

Qiu, S. J.

Richardson, D. J.

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sessions, N. P.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Soljacic, M.

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Song, G. F.

Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett. 25(5), 410–413 (2013).
[CrossRef]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

Tong, L.

Tong, L. M.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Tucker, R. S.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, G.

G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[CrossRef]

Wang, G. P.

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[CrossRef]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[CrossRef]

Wang, G. X.

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
[CrossRef] [PubMed]

Wang, P.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[CrossRef]

Wang, Q. J.

Ward, C. A.

Wilkinson, J. S.

Xiao, Y.

Xu, F.

Xu, Y.

Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett. 25(5), 410–413 (2013).
[CrossRef]

Yu, H.

Zeng, X.

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

Zervas, M. N.

M. Ding, M. N. Zervas, and G. Brambilla, “Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips,” Appl. Phys. Lett. 102(14), 141110 (2013).
[CrossRef]

M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
[CrossRef] [PubMed]

Zhang, A. P.

Zhang, J.

Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett. 25(5), 410–413 (2013).
[CrossRef]

Zhou, Y. J.

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Zi, F.

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (9)

G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90(11), 111107 (2007).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[CrossRef]

M. Ding, M. N. Zervas, and G. Brambilla, “Transverse excitation of plasmonic slot nano-resonators embedded in metal-coated plasmonic microfiber tips,” Appl. Phys. Lett. 102(14), 141110 (2013).
[CrossRef]

W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Appl. Phys. Lett. 101(13), 133502 (2012).
[CrossRef]

Y. J. Zhou and T. J. Cui, “Broadband slow-wave systems of subwavelength thickness excited by a metal wire,” Appl. Phys. Lett. 99(10), 101906 (2011).
[CrossRef]

G. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101(1), 013111 (2012).
[CrossRef]

Q. Gan and F. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98(25), 251103 (2011).
[CrossRef]

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies,” Appl. Phys. Lett. 97(15), 153115 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Xu, J. Zhang, and G. F. Song, “Slow surface plasmons in plasmonic grating waveguide,” IEEE Photon. Technol. Lett. 25(5), 410–413 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Nanotechnology (1)

G. X. Wang, H. Lu, X. M. Liu, and Y. K. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23(44), 444009 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Nature (4)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. M. Tong, F. Zi, X. Guo, and J. Y. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

L. Chen, G. P. Wang, Q. Q. Gan, and F. J. Bartoli, “Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes,” Phys. Rev. B 80(16), 161106 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

Q. Gan, Y. J. Ding, and F. J. Bartoli, “‘Rainbow’ trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sci Rep (1)

H. F. Hu, D. X. Ji, X. Zeng, K. Liu, and Q. Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci Rep 3, 1249 (2013).
[CrossRef] [PubMed]

Science (1)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the optical microfiber with a graded metal grating (a). Cross section of the proposed device in the x-y plane (b) and in the y-z plane (c).

Fig. 2
Fig. 2

Electric field distributions of the lowest order y- polarized SPP Mode I (a) and x- polarized SPP Mode II (b), and the lowest higher order y- polarized SPP Mode III (c) and x- polarized SPP Mode IV (d). The electric fields in the x-y plane and the y-z plane are in the planes described by pink dashed lines in Fig. 1(b) and 1(c). Λ=260nm , w=130nm , d=250nm , and h=400nm .

Fig. 3
Fig. 3

Dispersion relations of y-polarized (a) and x- polarized (b) SPP modes for different grating depths ( h=250nm,  300nm,  and  500nm ). Light line is dispersion relation of the fundamental mode in the microfiber without the metal grating ( h=0 ). HOSM denotes the lowest higher order SPP mode.

Fig. 4
Fig. 4

Group index of Mode I as a function of the frequency of the incident wave (a) and the grating depth at 200THz (b).

Fig. 5
Fig. 5

Electric field distributions for different wavelengths (a) and energy density as a function of position along the microfiber for three wavelengths (b). Electric field in input port (the white arrows represent the direction of electric field) (c), and 3D electric field of the grade microfiber grating with gold (d) and without gold (e) at 1.50μm.

Fig. 6
Fig. 6

Dispersion relations of x-polarized SPP modes for different grating widths ( Λ=260nm , w=130nm , h=150nm , d=200nm, 300nm, 400nm and 500nm ) (a), and electric field distributions in a microfiber with gradual grating thicknesses for different wavelengths in the x-z plane (y = 900nm) (b).

Fig. 7
Fig. 7

Dispersion relations of y- and x- polarized SPP modes (Mode I and Mode II) for different grating periods ( h=400nm , d=200nm , Λ=200nm, 260nm, and 400nm ).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε g = ε ω p 2 ω(ω+i ω c )

Metrics