Abstract

The optical properties of pure LuAl3(BO3)4 (abbreviated as LuAB) crystals were investigated for the first time. Large UV-transparent LuAl3(BO3)4 crystals were grown by a high-temperature top-seeding method with Li2WO4O7-B2O3 as the flux. The refractive indices of LuAl3(BO3)4 at several wavelengths covering ultraviolet-visible and near-infrared regions were measured by the auto-collimation method. The parameters of Sellmeier’s dispersion equation were determined from the experimental data. The phase-matching curve of second harmonic generation was measured. The nonlinear optical coefficient d11 of LuAB crystal was determined to be 1.10 pm/V by a phase-matching method. The UV cut-off wavelength of the LuAl3(BO3)4 crystal was shorter than 190 nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31, 179–278 (1995).
    [CrossRef]
  2. N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31(3-4), 279–312 (1995).
    [CrossRef]
  3. P. Becker, “Borate materials in nonlinear optics,” Adv. Mater.10(13), 979–992 (1998).
    [CrossRef]
  4. D. Jaque, J. Capmany, and J. G. Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3) 4: Nd3+,” Appl. Phys. Lett.75, 325–327 (1999).
    [CrossRef]
  5. A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).
  6. H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
    [CrossRef]
  7. Q. Liu, X. P. Yan, M. L. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett.36(14), 2653–2655 (2011).
    [CrossRef] [PubMed]
  8. O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
    [CrossRef]
  9. Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 microm,” Opt. Express18(13), 13700–13707 (2010).
    [CrossRef] [PubMed]
  10. J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
    [CrossRef]
  11. A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).
  12. N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
    [CrossRef]
  13. S. H. Fang, H. Liu, and N. Ye, “Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4,” Cryst. Growth Des.11(11), 5048–5052 (2011).
    [CrossRef]
  14. Z. G. Hu, X. S. Yu, Y. C. Yue, and J. Y. Yao, “YAl3 (BO3) 4: crystal growth and characterization,” J. Cryst. Growth312(20), 3029–3033 (2010).
    [CrossRef]
  15. L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
    [CrossRef]
  16. A. D. Mills, “Crystallographic data for new rare earth borate compounds, RX3(BO3)4,” Inorg. Chem.1(4), 960–961 (1962).
    [CrossRef]
  17. E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
    [CrossRef]
  18. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, Inc, 1996), Chap. 2.
  19. J. E. Bjorkholm and A. E. Siegman, “Accurate cw measurements of optical second-harmonic generation in ammonium dihydrogen phosphate and calcite,” Phys. Rev.154(3), 851–860 (1967).
    [CrossRef]
  20. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, Inc, 1996), Chap. 4.

2011 (3)

S. H. Fang, H. Liu, and N. Ye, “Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4,” Cryst. Growth Des.11(11), 5048–5052 (2011).
[CrossRef]

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Q. Liu, X. P. Yan, M. L. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett.36(14), 2653–2655 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

2007 (1)

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).

2005 (1)

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

2001 (1)

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

1999 (1)

D. Jaque, J. Capmany, and J. G. Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3) 4: Nd3+,” Appl. Phys. Lett.75, 325–327 (1999).
[CrossRef]

1998 (1)

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater.10(13), 979–992 (1998).
[CrossRef]

1995 (2)

N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31, 179–278 (1995).
[CrossRef]

N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31(3-4), 279–312 (1995).
[CrossRef]

1981 (1)

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

1979 (1)

A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).

1967 (1)

J. E. Bjorkholm and A. E. Siegman, “Accurate cw measurements of optical second-harmonic generation in ammonium dihydrogen phosphate and calcite,” Phys. Rev.154(3), 851–860 (1967).
[CrossRef]

1962 (1)

A. D. Mills, “Crystallographic data for new rare earth borate compounds, RX3(BO3)4,” Inorg. Chem.1(4), 960–961 (1962).
[CrossRef]

Aka, G.

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Aloui-Lebbou, O.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Azizov, A. V.

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).

Becker, P.

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater.10(13), 979–992 (1998).
[CrossRef]

Belokoneva, E. L.

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

Belov, N. V.

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).

Bjorkholm, J. E.

J. E. Bjorkholm and A. E. Siegman, “Accurate cw measurements of optical second-harmonic generation in ammonium dihydrogen phosphate and calcite,” Phys. Rev.154(3), 851–860 (1967).
[CrossRef]

Brenier, A.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).

Capmany, J.

D. Jaque, J. Capmany, and J. G. Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3) 4: Nd3+,” Appl. Phys. Lett.75, 325–327 (1999).
[CrossRef]

Chen, C.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Chen, X.

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Chen, Y. J.

Cohen-Adad, M. T.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Dujardin, C.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Fan, J. D.

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

Fang, S. H.

S. H. Fang, H. Liu, and N. Ye, “Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4,” Cryst. Growth Des.11(11), 5048–5052 (2011).
[CrossRef]

Florian, P.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Gong, M. L.

Gong, X. H.

Goutaudier, C.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Han, S. J.

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

Hruschka, M. A.

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Hu, Z. G.

Z. G. Hu, X. S. Yu, Y. C. Yue, and J. Y. Yao, “YAl3 (BO3) 4: crystal growth and characterization,” J. Cryst. Growth312(20), 3029–3033 (2010).
[CrossRef]

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Huang, J. H.

Huang, L. X.

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Huang, Y. D.

Jaque, D.

D. Jaque, J. Capmany, and J. G. Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3) 4: Nd3+,” Appl. Phys. Lett.75, 325–327 (1999).
[CrossRef]

Keszler, D. A.

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Kong, W.

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Kubota, S.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Leoniuk, N. I.

A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).

Leonyuk, N. I.

N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31, 179–278 (1995).
[CrossRef]

N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31(3-4), 279–312 (1995).
[CrossRef]

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

Li, J.

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

Li, J. F.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).

Li, R. K.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Lin, Y. F.

Liu, C.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Liu, H.

S. H. Fang, H. Liu, and N. Ye, “Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4,” Cryst. Growth Des.11(11), 5048–5052 (2011).
[CrossRef]

Q. Liu, X. P. Yan, M. L. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett.36(14), 2653–2655 (2011).
[CrossRef] [PubMed]

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Liu, L.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Liu, Q.

Luo, Z. D.

Massiot, D.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Mills, A. D.

A. D. Mills, “Crystallographic data for new rare earth borate compounds, RX3(BO3)4,” Inorg. Chem.1(4), 960–961 (1962).
[CrossRef]

Pedrini, C.

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Siegman, A. E.

J. E. Bjorkholm and A. E. Siegman, “Accurate cw measurements of optical second-harmonic generation in ammonium dihydrogen phosphate and calcite,” Phys. Rev.154(3), 851–860 (1967).
[CrossRef]

Simonov, M. A.

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

Sole, J. G.

D. Jaque, J. Capmany, and J. G. Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3) 4: Nd3+,” Appl. Phys. Lett.75, 325–327 (1999).
[CrossRef]

Stone-Sundberg, J. L.

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Timchenko, T. I.

A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).

Tu, C. Y.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).

Wang, J. Y.

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

Wang, X.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Xu, G. G.

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

Xu, X.

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Yan, X. P.

Yao, J. Y.

Z. G. Hu, X. S. Yu, Y. C. Yue, and J. Y. Yao, “YAl3 (BO3) 4: crystal growth and characterization,” J. Cryst. Growth312(20), 3029–3033 (2010).
[CrossRef]

Ye, N.

S. H. Fang, H. Liu, and N. Ye, “Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4,” Cryst. Growth Des.11(11), 5048–5052 (2011).
[CrossRef]

Q. Liu, X. P. Yan, M. L. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett.36(14), 2653–2655 (2011).
[CrossRef] [PubMed]

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Yu, X. S.

Z. G. Hu, X. S. Yu, Y. C. Yue, and J. Y. Yao, “YAl3 (BO3) 4: crystal growth and characterization,” J. Cryst. Growth312(20), 3029–3033 (2010).
[CrossRef]

Yue, Y. C.

Z. G. Hu, X. S. Yu, Y. C. Yue, and J. Y. Yao, “YAl3 (BO3) 4: crystal growth and characterization,” J. Cryst. Growth312(20), 3029–3033 (2010).
[CrossRef]

Zhang, G.

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Q. Liu, X. P. Yan, M. L. Gong, H. Liu, G. Zhang, and N. Ye, “High-power 266 nm ultraviolet generation in yttrium aluminum borate,” Opt. Lett.36(14), 2653–2655 (2011).
[CrossRef] [PubMed]

Zhu, Z. J.

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).

Adv. Mater. (1)

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater.10(13), 979–992 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

D. Jaque, J. Capmany, and J. G. Sole, “Continuous wave laser radiation at 669 nm from a self-frequency-doubled laser of YAl3(BO3) 4: Nd3+,” Appl. Phys. Lett.75, 325–327 (1999).
[CrossRef]

A. Brenier, C. Y. Tu, Z. J. Zhu, and J. F. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett.90(071103), 1–3 (2007).

Chem. Mater. (1)

N. Ye, J. L. Stone-Sundberg, M. A. Hruschka, G. Aka, W. Kong, and D. A. Keszler, “Nonlinear optical crystal YxLayScz(BO3)4 (x plus y plus z = 4),” Chem. Mater.17(10), 2687–2692 (2005).
[CrossRef]

Cryst. Growth Des. (1)

S. H. Fang, H. Liu, and N. Ye, “Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4,” Cryst. Growth Des.11(11), 5048–5052 (2011).
[CrossRef]

Dokl. Akad. Nauk SSSR (1)

A. V. Azizov, N. I. Leoniuk, T. I. Timchenko, and N. V. Belov, “Crystallization of yttrium-aluminium borate from solution in melt on the base of potassium trimolybdate,” Dokl. Akad. Nauk SSSR246, 91–93 (1979).

Inorg. Chem. (1)

A. D. Mills, “Crystallographic data for new rare earth borate compounds, RX3(BO3)4,” Inorg. Chem.1(4), 960–961 (1962).
[CrossRef]

J. Cryst. Growth (2)

J. Li, G. G. Xu, S. J. Han, J. D. Fan, and J. Y. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth311(17), 4251–4254 (2009).
[CrossRef]

Z. G. Hu, X. S. Yu, Y. C. Yue, and J. Y. Yao, “YAl3 (BO3) 4: crystal growth and characterization,” J. Cryst. Growth312(20), 3029–3033 (2010).
[CrossRef]

J. Struct. Chem. (1)

E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov, “Crystal structure of YAl3(BO3)4,” J. Struct. Chem.22(3), 476–478 (1981).
[CrossRef]

Mater. Res. Innov. (1)

H. Liu, X. Chen, L. X. Huang, X. Xu, G. Zhang, and N. Ye, “Growth and optical propertiesof UV transparent YAB crystals,” Mater. Res. Innov.15(2), 140–144 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

O. Aloui-Lebbou, C. Goutaudier, S. Kubota, C. Dujardin, M. T. Cohen-Adad, C. Pedrini, P. Florian, and D. Massiot, “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater.16(1-2), 77–86 (2001).
[CrossRef]

Phys. Rev. (1)

J. E. Bjorkholm and A. E. Siegman, “Accurate cw measurements of optical second-harmonic generation in ammonium dihydrogen phosphate and calcite,” Phys. Rev.154(3), 851–860 (1967).
[CrossRef]

Prog. Cryst. Growth Ch. (2)

N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31, 179–278 (1995).
[CrossRef]

N. I. Leonyuk, “Recent developments in the growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Ch.31(3-4), 279–312 (1995).
[CrossRef]

Solid State Sci. (1)

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci.11(4), 841–844 (2009).
[CrossRef]

Other (2)

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, Inc, 1996), Chap. 2.

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, Inc, 1996), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The UV transmittance curve of LuAB crystals.

Fig. 2
Fig. 2

Crystallization region for LuAB crystals with an excess of 20 wt% Al2O3; ■—LuAB + LuLiW2O8; ○—dose not melt at 1100 þC; ●—LuAB; □—LuLiW2O8; ♦ —LuBO3.

Fig. 3
Fig. 3

LuAB crystal grown along [100] direction (a) ; and along [001] direction (b).

Fig. 4
Fig. 4

Sketch of the Littow prism

Fig. 5
Fig. 5

Refractive indices of LuAB.

Fig. 6
Fig. 6

Phase-matching curves and measured phase-matching angles (circles) of LuAB.

Fig. 7
Fig. 7

Variation of walk-off angle and angular acceptance for type I as a function of fundamental wavelength.

Fig. 8
Fig. 8

Effective nonlinear coefficient as a function of fundamental wavelength for type I and type II SHG in LuAB.

Tables (2)

Tables Icon

Table 1 Constants of sellmeier Eqs. for the LuAB crystal

Tables Icon

Table 2 The measured and calculated values of the principal refractive indices

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n=sinχ/sinξ
n i 2 = A i + B i λ 2 C i D i λ 2 ,(i=o,e)
θ m I = sin 1 [ ( n e 2ω n o ω ) 2 ( n o 2ω ) 2 ( n o ω ) 2 ( n o 2ω ) 2 ( n e 2ω ) 2 ] 1/2
[ cos 2 ( θ m II ) ( n o 2ω ) 2 + sin 2 ( θ m II ) ( n e 2ω ) 2 ]= 1 2 { n o ω + [ cos 2 ( θ m II ) ( n o ω ) 2 + sin 2 ( θ m II ) ( n e ω ) 2 ] 1 /2 }
P 2ω (l)= 32 π 2 c 3 ω 2 n 1 2 n 2 d eff 2 P ω (0) ω 0 2 l 2
d eff (X)= [ P X 2ω P A 2ω n 1 2 (X) n 2 (X) n 1 2 (A) n 2 (A) ] 1/2 l A l X d eff (A)
d eff = d 11 cosθcos3φ
d eff = d 11 cos 2 θsin3φ

Metrics