Abstract

Bragg scattering effects in bottom-emitting organic light-emitting diodes (OLEDs) grown on corrugated aluminum-doped zinc oxide electrodes are analyzed. Periodic corrugation is introduced by structuring the oxide electrode via UV laser ablation, a process that enables flexible adjustment of the period and height of corrugation. We demonstrate that fabrication of stable and electrically efficient OLEDs on these rough substrates is feasible. Sharp spectral features are superimposed onto the broad emission spectra of the OLEDs, providing clear evidence for Bragg scattering of light from guided modes into the air cone. Theoretical analysis based on an emissive dipole model and conservation of momentum considerations allows a quantitative description of scattering and the associated dispersion relations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002).
    [CrossRef]
  2. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
    [CrossRef]
  3. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001).
    [CrossRef]
  4. M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91, 595–604 (2002).
    [CrossRef]
  5. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
    [CrossRef] [PubMed]
  6. B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, and W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express20, A205–A212 (2012).
    [CrossRef] [PubMed]
  7. M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
    [CrossRef]
  8. J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
    [CrossRef]
  9. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
    [CrossRef]
  10. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
    [CrossRef]
  11. S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
    [CrossRef]
  12. Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
    [CrossRef]
  13. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, and W. Brütting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoim-printed gratings,” Opt. Express19, A7–A19 (2011).
    [CrossRef] [PubMed]
  14. D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
    [CrossRef] [PubMed]
  15. T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, and U. Lemmer, “White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and lambertian emission,” Opt. Express20, A932–A940 (2012).
    [CrossRef] [PubMed]
  16. Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
    [CrossRef]
  17. F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett.99, 123302 (2011).
    [CrossRef]
  18. H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
    [CrossRef]
  19. S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
    [CrossRef]
  20. M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61, 11125–11135 (2000).
    [CrossRef]
  21. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12, 3673–3685 (2004).
    [CrossRef] [PubMed]
  22. C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett.37, 2646–2648 (2012).
    [CrossRef] [PubMed]
  23. Substrates were kindly provided by von Ardenne Anlagentechnik.
  24. A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
    [CrossRef]
  25. A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
    [CrossRef]
  26. L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
    [CrossRef] [PubMed]
  27. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
    [CrossRef] [PubMed]
  28. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011).
    [CrossRef] [PubMed]
  29. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
    [CrossRef]
  30. Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).
  31. Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006).
    [CrossRef]
  32. D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D: Appl. Phys.35, 794–801 (2002).
    [CrossRef]
  33. A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000).
    [CrossRef]
  34. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A15, 962–971 (1998).
    [CrossRef]
  35. T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
    [CrossRef]
  36. S.-Y. Kim and J.-J. Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness,” Org. Electron.11, 1010–1015 (2010).
    [CrossRef]
  37. T. J. Davis, “Surface plasmon modes in multi-layer thin films,” Opt. Commun.282, 135–140 (2009).
    [CrossRef]
  38. H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A17, 1048–1059 (2000).
    [CrossRef]
  39. P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett.79, 3035–3038 (2001).
    [CrossRef]

2012 (8)

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, and W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express20, A205–A212 (2012).
[CrossRef] [PubMed]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
[CrossRef]

J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
[CrossRef]

T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, and U. Lemmer, “White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and lambertian emission,” Opt. Express20, A932–A940 (2012).
[CrossRef] [PubMed]

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett.37, 2646–2648 (2012).
[CrossRef] [PubMed]

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

2011 (6)

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett.99, 123302 (2011).
[CrossRef]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, and W. Brütting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoim-printed gratings,” Opt. Express19, A7–A19 (2011).
[CrossRef] [PubMed]

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011).
[CrossRef] [PubMed]

2010 (2)

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

S.-Y. Kim and J.-J. Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness,” Org. Electron.11, 1010–1015 (2010).
[CrossRef]

2009 (3)

T. J. Davis, “Surface plasmon modes in multi-layer thin films,” Opt. Commun.282, 135–140 (2009).
[CrossRef]

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

2008 (2)

S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
[CrossRef]

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
[CrossRef]

2007 (1)

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
[CrossRef] [PubMed]

2006 (1)

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006).
[CrossRef]

2005 (2)

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

2004 (2)

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
[CrossRef]

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12, 3673–3685 (2004).
[CrossRef] [PubMed]

2002 (3)

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D: Appl. Phys.35, 794–801 (2002).
[CrossRef]

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002).
[CrossRef]

M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91, 595–604 (2002).
[CrossRef]

2001 (3)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001).
[CrossRef]

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett.79, 3035–3038 (2001).
[CrossRef]

2000 (3)

A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000).
[CrossRef]

H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A17, 1048–1059 (2000).
[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61, 11125–11135 (2000).
[CrossRef]

1998 (1)

1988 (1)

Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).

Abdellah, A.

Acevedo, D.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
[CrossRef]

Adachi, C.

Agashe, C.

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006).
[CrossRef]

Asano, T.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Asche-Tauscher, J.

Bai, Y.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Baldo, M. A.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001).
[CrossRef]

Barbero, C.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
[CrossRef]

Barié, N.

Barnes, W. L.

S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12, 3673–3685 (2004).
[CrossRef] [PubMed]

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett.79, 3035–3038 (2001).
[CrossRef]

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61, 11125–11135 (2000).
[CrossRef]

Bi, Y.-G.

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

Bocksrocker, T.

Bremer, M.

Brütting, W.

Burroughes, J. H.

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002).
[CrossRef]

Chen, Q.-D.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Chiu, N.-F.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

Choi, J.

J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
[CrossRef]

Cinà, S.

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002).
[CrossRef]

Danz, N.

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

Davis, T. J.

T. J. Davis, “Surface plasmon modes in multi-layer thin films,” Opt. Commun.282, 135–140 (2009).
[CrossRef]

de Jongh, R. V.

A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000).
[CrossRef]

Eckhardt, S.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Eschenbaum, C.

Feng, J.

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Flämmich, M.

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

Forrest, S. R.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001).
[CrossRef]

Frischeisen, J.

Fujita, M.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Furno, M.

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

Gehlhaar, R.

Gerken, M.

Granqvist, C. G.

Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).

Guttmann, M.

Hamberg, I.

Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).

Helander, M. G.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Ho, Y. L.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
[CrossRef]

Ho, Y.-H.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

Hofmann, S.

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011).
[CrossRef] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

Holzapfel, C.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

Hsu, S.-Y.

S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
[CrossRef]

Ishihara, K.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Jaeger, A.

Jakobs, P.-J.

Jin, Y.

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Jin, Z.

Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).

Kherani, N.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Kim, J.-J.

S.-Y. Kim and J.-J. Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness,” Org. Electron.11, 1010–1015 (2010).
[CrossRef]

Kim, S.-Y.

S.-Y. Kim and J.-J. Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness,” Org. Electron.11, 1010–1015 (2010).
[CrossRef]

Kim, Y. H.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Kinzel, J. B.

Kluge, C.

Koh, T.-W.

J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
[CrossRef]

Krummacher, B. C.

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

Kwok, H. S.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
[CrossRef]

L., J.-H.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

Lasagni, A.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
[CrossRef]

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

Lasagni, A. F.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Lee, K.-L.

S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
[CrossRef]

Lee, M.-C.

S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
[CrossRef]

Lee, S.

J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
[CrossRef]

Lemarchand, F.

Lemmer, U.

Leo, K.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
[CrossRef]

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011).
[CrossRef] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
[CrossRef] [PubMed]

Li, Y.-F.

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

Ligthart, L. P.

A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000).
[CrossRef]

Lin, C.-W.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

Liu, F.

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett.99, 123302 (2011).
[CrossRef]

Liu, Y.-F.

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Lu, M.-H.

M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91, 595–604 (2002).
[CrossRef]

Lu, Z.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Lugli, P.

Lupton, J. M.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

Lüssem, B.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
[CrossRef]

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011).
[CrossRef] [PubMed]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

Maennig, B.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
[CrossRef] [PubMed]

Maier, W. F.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

Maier-Flaig, F.

Matterson, B. J.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

Meerheim, R.

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

Mergel, D.

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006).
[CrossRef]

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D: Appl. Phys.35, 794–801 (2002).
[CrossRef]

Michaelis, D.

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

Mücklich, F.

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
[CrossRef]

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

Müller-Meskamp, L.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Nakada, H.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Neyts, K. A.

Nien, S.-Y.

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

Niu, Q.

Noda, S.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Nunzi, J.-M.

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett.99, 123302 (2011).
[CrossRef]

O’Brien, P. G.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Ohata, H.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Ozin, G. A.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Pargner, A.

Patel, N. K.

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002).
[CrossRef]

Peng, H. J.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
[CrossRef]

Pfeiffer, M.

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
[CrossRef] [PubMed]

Pradana, A.

Preinfalk, J. B.

Puzzo, D. P.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Qiao, Z.

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006).
[CrossRef]

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D: Appl. Phys.35, 794–801 (2002).
[CrossRef]

Rädler, M.

Reineke, S.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
[CrossRef]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

Reusch, T. C. G.

Rigneault, H.

Roch, T.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Safonov, A. F.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

Salt, M. G.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61, 11125–11135 (2000).
[CrossRef]

Samuel, I. D. W.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

Scarpa, G.

Schmidt, T. D.

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

Scholz, B. J.

Scholz, R.

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

Sentenac, A.

Setz, D. S.

B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, and W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express20, A205–A212 (2012).
[CrossRef] [PubMed]

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

Seyler, M.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

Shimoji, N.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Simonen, J.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Soheilnia, N.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Song, J.-F.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Sturm, J. C.

M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91, 595–604 (2002).
[CrossRef]

Sun, H.-B.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Thompson, M. E.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001).
[CrossRef]

Thomschke, M.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
[CrossRef]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express19, A1250–A1264 (2011).
[CrossRef] [PubMed]

Tsuji, T.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Ueno, T.

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
[CrossRef] [PubMed]

Wang, Z.

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

Wedge, S.

Wei, P.-K.

S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
[CrossRef]

Worthing, P. T.

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett.79, 3035–3038 (2001).
[CrossRef]

Yarovoy, A. G.

A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000).
[CrossRef]

Yoo, S.

J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
[CrossRef]

Yu, X. J.

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
[CrossRef]

Zi, J.

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Adv. Mater. (3)

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater.13, 123–128 (2001).
[CrossRef]

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mücklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater.17, 2228–2232 (2005).
[CrossRef]

L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckhardt, K. Leo, and A. F. Lasagni, “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Adv. Mater.24, 906–910 (2012).
[CrossRef] [PubMed]

Appl. Phys. A Mater. Sci. Process. (1)

A. Lasagni, D. Acevedo, C. Barbero, and F. Mücklich, “Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning,” Appl. Phys. A Mater. Sci. Process.91, 369–373 (2008).
[CrossRef]

Appl. Phys. Lett. (9)

R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, and K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett.97, 253305 (2010).
[CrossRef]

Z. Jin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputterdeposited ZnO:Al thin films,” Appl. Phys. Lett.64, 5117 (1988).

T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, “Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency,” Appl. Phys. Lett.99, 163302 (2011).
[CrossRef]

S.-Y. Hsu, M.-C. Lee, K.-L. Lee, and P.-K. Wei, “Extraction enhancement in organic light emitting devices by using metallic nanowire arrays,” Appl. Phys. Lett.92, 013303 (2008).
[CrossRef]

S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. L., and C.-W. Lin, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett.94, 103304 (2009).
[CrossRef]

Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, and Y.-F. Liu, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structures,” Appl. Phys. Lett.100, 053304 (2012).
[CrossRef]

F. Liu and J.-M. Nunzi, “Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles,” Appl. Phys. Lett.99, 123302 (2011).
[CrossRef]

J. Choi, T.-W. Koh, S. Lee, and S. Yoo, “Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and micropatterned indium tin oxide electrodes with optimal taper angle,” Appl. Phys. Lett.100, 233303 (2012).
[CrossRef]

P. T. Worthing and W. L. Barnes, “Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,” Appl. Phys. Lett.79, 3035–3038 (2001).
[CrossRef]

Chem. Rev. (1)

K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107, 1233–1271 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant. Electron. (1)

N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quant. Electron.8, 346–361 (2002).
[CrossRef]

J. Appl. Phys. (3)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys.90, 5048 (2001).
[CrossRef]

M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys.91, 595–604 (2002).
[CrossRef]

H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced coupling of light from organic light emitting diodes using nanoporous films,” J. Appl. Phys.96, 1649 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D: Appl. Phys. (1)

D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D: Appl. Phys.35, 794–801 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers,” Jpn. J. Appl. Phys.44, 3669–3677 (2005).
[CrossRef]

Nano Lett. (2)

D. P. Puzzo, M. G. Helander, P. G. O’Brien, Z. Wang, N. Soheilnia, N. Kherani, Z. Lu, and G. A. Ozin, “Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals,” Nano Lett.11, 1457–1462 (2011).
[CrossRef] [PubMed]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett.12, 424–428 (2012).
[CrossRef]

Nature (1)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with flourescent tube efficiency,” Nature459, 234–238 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. J. Davis, “Surface plasmon modes in multi-layer thin films,” Opt. Commun.282, 135–140 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Org. Electron. (2)

S.-Y. Kim and J.-J. Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness,” Org. Electron.11, 1010–1015 (2010).
[CrossRef]

Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, and H.-B. Sun, “Outcoupling of trapped optical modes in organic light emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron.12, 1927–1935 (2011).
[CrossRef]

Phys. Rev. B (2)

M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, and K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B85, 115–205 (2012).
[CrossRef]

M. G. Salt and W. L. Barnes, “Flat photonic bands in guided modes of textured metallic microcavities,” Phys. Rev. B61, 11125–11135 (2000).
[CrossRef]

Radio Sci. (1)

A. G. Yarovoy, R. V. de Jongh, and L. P. Ligthart, “Scattering properties of a statistically rough interface inside a multilayered medium,” Radio Sci.35, 455–462 (2000).
[CrossRef]

Thin Solid Films (1)

Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films,” Thin Solid Films496, 520–525 (2006).
[CrossRef]

Other (1)

Substrates were kindly provided by von Ardenne Anlagentechnik.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a–c) Atomic force microscopy (AFM) images of the substrates for Devices A to C, with periodicity as indicated on each panel. d) Schematic layer structure of investigated devices.

Fig. 2
Fig. 2

a) Current-voltage and voltage-luminance characteristics of the planar and corrugated phosphorescent red emitting OLEDs. b) External quantum efficiency with respect to the current density.

Fig. 3
Fig. 3

Transmission spectra of an ITO reference electrode, and the unstructured and structured ZnO:Al electrodes deposited on glass substrate. The normalized photoluminescence spectrum of the emitter Ir(MDQ)2(acac) highlights the energy interval of interest.

Fig. 4
Fig. 4

Measured angle resolved emission spectra for the OLEDs on corrugated electrodes. Figures 4(a) and 4(b) show the s- and p-polarized emission for Device A, Figs. 4(c) and 4(d) for Device B, and Figs. 4(e) and 4(f) for Device C.

Fig. 5
Fig. 5

Simulated power dissipation spectrum K for a planar OLED with stack geometry as shown in Fig. 1(a) for s-polarization, 1(b) for p-polarisation. Dash-dotted lines representing the light lines seperate the regions with coupling of power to air, into the glass substrate, index-guided within the organic material (org), the transparent electrode material (AZO), and the evanescent regime.

Fig. 6
Fig. 6

Difference ΔInorm of normalized Spectral Radiant Intensities between periodically corrugated and planar devices Inorm inside the air cone (colored scale) and simulated power dissipation spectra K outside the air cone (grey scale): Fig. 6(a) Device A in s-polarization, Fig. 6(b) Device B in p-polarization, Fig. 6(c) Device C in p-polarization. In all panels the fitted reciprocal lattice vector G is visualized by double ended arrows. Different Bragg-scattered modes are indicated by dashed lines: 0th order (black), 1st order (red), 2nd order (blue), 3rd order (yellow), 4th order (magenta), 5th (light-blue). The black dash-dotted lines seperate air cone, substrate, organic index-waveguides, transparent electrode index-waveguides and evanescent modes.

Tables (1)

Tables Icon

Table 1 Comparision of the lattice constants Λ for Devices A, B and C from measurements of the OLEDs emission spectra, from diffraction experiments with a red laser, and from AFM measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x , scatt = k sin θ EML = k x + m G ,
Δ I norm = I corr ( E , k x ) / max ( I corr ( E , 0 ) ) I planar ( E , k x ) / max ( I planar ( E , 0 ) ) .

Metrics