Abstract

We report on a systematic study of the absorption and emission spectral properties of (Yb0.1Y0.9)3(Sc1.5Ga0.5)Ga3O12 (Yb:YSGG) crystals. The broad fluorescence spectral lines indicate great potential of Yb:YSGG for tunable and ultrafast laser applications. Efficient continuous-wave (cw) laser oscillation was also demonstrated at room temperature (RT), generating an output power of 6.11 W with an optical-to-optical efficiency of 64.2%, and a slope efficiency of 80.1% with respect to absorbed pump power. The laser emission spectrum shifts to shorter wavelengths as the transmission of the output coupler varies from 3% to 20%, a result that can be explained based on the effective gain cross-sections of Yb:YSGG.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
    [CrossRef]
  2. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
    [CrossRef]
  3. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
    [CrossRef]
  4. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
    [CrossRef]
  5. C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
    [CrossRef]
  6. A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
    [CrossRef]
  7. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  8. T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
    [CrossRef] [PubMed]
  9. J. Dong, K. Ueda, and A. A. Kaminskii, “Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals,” Opt. Express16(8), 5241–5251 (2008).
    [CrossRef] [PubMed]
  10. R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett.15(9), 486–488 (1990).
    [CrossRef] [PubMed]
  11. B. J. Dinerman and P. F. Moulton, “3- µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett.19(15), 1143–1145 (1994).
    [CrossRef] [PubMed]
  12. E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
    [CrossRef]
  13. K. Zhong, J. Yao, C. Sun, C. Zhang, Y. Miao, R. Wang, D. Xu, F. Zhang, Q. Zhang, D. Sun, and S. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
    [CrossRef] [PubMed]
  14. Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
    [CrossRef]
  15. S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: A review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
    [CrossRef]
  16. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
    [CrossRef]
  17. M. A. Noginov, P. Venkateswarlu, and M. Mahdi, “Two-step upconversion luminescence in Yb:Tb:YSGG crystal,” J. Opt. Soc. Am. B13(4), 735–741 (1996).
    [CrossRef]
  18. A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys.8(10), 1100–1128 (2007).
    [CrossRef]
  19. A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).
  20. A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
    [CrossRef]
  21. L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
    [CrossRef]
  22. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
    [CrossRef]
  23. R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
    [CrossRef]
  24. D. J. Wood, “Energy levels of Yb3+ in garnets,” J. Chem. Phys.39(7), 1671–1673 (1963).
    [CrossRef]
  25. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
    [CrossRef]
  26. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1976).
  27. P. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B19(10), 2365–2375 (2002).
    [CrossRef]

2011 (1)

2010 (1)

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

2008 (2)

J. Dong, K. Ueda, and A. A. Kaminskii, “Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals,” Opt. Express16(8), 5241–5251 (2008).
[CrossRef] [PubMed]

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: A review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

2007 (2)

A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys.8(10), 1100–1128 (2007).
[CrossRef]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

2003 (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

2002 (1)

2001 (1)

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

2000 (2)

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

1999 (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

1997 (2)

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

1996 (1)

1994 (2)

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

B. J. Dinerman and P. F. Moulton, “3- µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett.19(15), 1143–1145 (1994).
[CrossRef] [PubMed]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

1990 (2)

R. C. Stoneman and L. Esterowitz, “Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers,” Opt. Lett.15(9), 486–488 (1990).
[CrossRef] [PubMed]

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

1986 (1)

E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
[CrossRef]

1976 (2)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1976).

1973 (1)

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

1967 (1)

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
[CrossRef]

1963 (1)

D. J. Wood, “Energy levels of Yb3+ in garnets,” J. Chem. Phys.39(7), 1671–1673 (1963).
[CrossRef]

1960 (1)

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

Abell, J. S.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: A review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Allik, T. H.

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Andres, H.

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

Balembois, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Barns, R. L.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Blasse, G.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

Bogomolova, G. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1976).

Boulon, G.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Brandle, C. D.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Brenier, A.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Buchanan, R. A.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

de Heer, E.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Diening, A.

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

Dinerman, B. J.

Dong, J.

Druon, F.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Duczynski, E. W.

E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
[CrossRef]

Ellens, A.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Esterowitz, L.

Fort, D.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: A review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Gaumé, R.

Georges, P.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Godard, A.

A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys.8(10), 1100–1128 (2007).
[CrossRef]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Gruber, J. B.

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Haumesser, P.

Heerdt, T.

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

Heeroma, M.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

Herrmann, G. F.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
[CrossRef]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Huber, G.

E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Jiang, M.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Kaminskii, A. A.

J. Dong, K. Ueda, and A. A. Kaminskii, “Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals,” Opt. Express16(8), 5241–5251 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1976).

Keller, U.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Kokta, M. R.

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Koohpayeh, S. M.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: A review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Kück, S.

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Mahdi, M.

Meijerink, A.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

Miao, Y.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Morrison, C. A.

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Moulton, P. F.

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Noginov, M. A.

Ostroumov, V. G.

E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
[CrossRef]

Pappalardo, R.

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Pearson, J. J.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
[CrossRef]

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Shcherbakov, I. A.

E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Stoneman, R. C.

Sun, C.

Sun, D.

Ter Heerdt, M. L. H.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

Ueda, K.

van Pieterson, L.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

Venkateswarlu, P.

Viana, B.

Vivien, D.

Vylegzhanin, D. N.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1976).

Wang, J.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Wang, R.

Wang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Wegh, R. T.

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

Wei, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Wickersheim, K. A.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
[CrossRef]

Wood, D. J.

D. J. Wood, “Energy levels of Yb3+ in garnets,” J. Chem. Phys.39(7), 1671–1673 (1963).
[CrossRef]

Wood, D. L.

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

Wu, K.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Xu, D.

Yakovlev, A. A.

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

Yao, B.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Yao, J.

Yin, S.

Yu, H.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zavartsev, Yu. D.

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

Zhang, C.

Zhang, F.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Zhang, H.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, Q.

Zhang, X.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, Y.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhong, K.

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Appl. Phys. B (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

E. W. Duczynski, G. Huber, V. G. Ostroumov, and I. A. Shcherbakov, “cw double cross pumping of the 5I7-5I8 laser transition in Ho3+-doped garnets,” Appl. Phys. Lett.48(23), 1562–1563 (1986).
[CrossRef]

C. R. Phys. (1)

A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review,” C. R. Phys.8(10), 1100–1128 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of Absorption and Emission Properties of Yb3+-Doped Crystals for Laser Applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and Characteristics of Yb-doped Y3Ga5O12 Laser Crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

J. Appl. Phys. (1)

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

J. Chem. Phys. (2)

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

D. J. Wood, “Energy levels of Yb3+ in garnets,” J. Chem. Phys.39(7), 1671–1673 (1963).
[CrossRef]

J. Cryst. Growth (2)

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

J. Lumin. (1)

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser & Photon. Rev. (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Phys. Rev. (1)

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F. Herrmann, “Energy levels of Yb3+ in gallium and aluminum garnets. I. spectra,” Phys. Rev.159(2), 245–251 (1967).
[CrossRef]

Phys. Rev. B (2)

A. Ellens, H. Andres, T. Heerdt, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength,” Phys. Rev. B55(1), 173–179 (1997).

A. Ellens, H. Andres, M. L. H. Ter Heerdt, R. T. Wegh, A. Meijerink, and G. Blasse, “Spectral-line-broadening study of the trivalent lanthanide-ion series. II. The variation of the electron-phonon coupling strength through the series,” Phys. Rev. B55(1), 180–186 (1997).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Prog. Cryst. Growth Charact. Mater. (1)

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: A review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Sov. Phys. JETP (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP42, 440–446 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup of the cw Yb:YSGG laser.

Fig. 2
Fig. 2

The absorption (RT) and fluorescence (78K) spectra of Yb:YSGG versus wavelength.

Fig. 3
Fig. 3

RT emission spectrum of Yb:YSGG with Yb3+ energy level scheme (inset).

Fig. 4
Fig. 4

σg(λ) of Yb:YSGG versus wavelength. (Inset) σg(λ) of Yb:YSGG for β ≤ 0.075.

Fig. 5
Fig. 5

Output power versus absorbed pump power of the cw Yb:YSGG laser for T = 3%.

Fig. 6
Fig. 6

Laser emission spectrum of Yb:YSGG measured at Pabs = 2.19 W in the cases of T = 3% and 20%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ em (λ)= σ abs (λ) Z l Z u exp( ( h c λ ZL h c λ )/kT )
Z a = i d i a exp( E i a / k B T)
σ g (λ)=β σ em (λ)(1β) σ abs (λ)
β min (1025.4nm)= σ abs (1025.4nm) σ abs (1025.4nm)+ σ em (1025.4nm)

Metrics