Abstract

In this paper, we report on cascaded Raman scattering (RS) in a highly germanium-doped silica fiber (HGDF) pumped by a picosecond pulsed master oscillator power amplifier (MOPA) system at 1064 nm in the normal dispersion regime. Benefited by the higher Raman gain of germanium (GeO2) than silica in the core, the length of the HGDF is only several meters. The broadest output spectrum comprises of 10 orders Raman stokes waves and eventually evolves into a supercontinuum (SC) spanning from 1000 to beyond 2100 nm with an output average power up to Watt scale. To the best of our knowledge, this is the first time to obtain such a broad cascaded RS spectrum in a short length of GeO2-doped step index silica fiber. We also numerically investigate the propagation of picosecond pulses in this HGDF based on the generalized nonlinear Schrödinger equation (GNLSE) which includes most of the dispersive and nonlinear effects, and the simulation results are in fairly good agreement with our experiments. It is believed that the numerical approach adopted in this paper is very beneficial for designing customized cascaded Raman fiber lasers before experimental implementations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear fiber optics, 5th ed. (Academic Press, 2013).
  2. C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev.182(2), 482–494 (1969).
    [CrossRef]
  3. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “SRS generation spanning over two octaves in a graded-index multimode optical fiber,” arXiv:1301.6203 (2013). http://arxiv.org/abs/1301.6203
  4. G. Rosman, “High-order comb spectrum from stimulated raman scattering in a silica-core fibre,” Opt. Quantum Electron.14(1), 92–93 (1982).
    [CrossRef]
  5. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express12(19), 4366–4371 (2004).
    [CrossRef] [PubMed]
  6. H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, and D. Kracht, “Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode,” Opt. Express19(27), 25918–25924 (2011).
    [CrossRef] [PubMed]
  7. T. S. McComb, “Power Scaling of Large Mode Area Thulium Fiber Lasers in Various Spectral and Temporal Regimes,” (University of Central Florida Orlando, Florida, 2009).
  8. F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
    [CrossRef]
  9. L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron.14(11), 855–859 (1978).
    [CrossRef]
  10. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  11. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett.33(15), 1690–1692 (2008).
    [CrossRef] [PubMed]
  12. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm,” Opt. Lett.36(15), 2859–2861 (2011).
    [CrossRef] [PubMed]
  13. M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  14. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
    [CrossRef] [PubMed]
  15. J. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University, 2010).
  16. K. K. Chen, S. U. Alam, P. Horak, C. A. Codemard, A. Malinowski, and D. J. Richardson, “Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm,” Opt. Lett.35(14), 2433–2435 (2010).
    [CrossRef] [PubMed]
  17. Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express10(17), 853–864 (2002).
    [CrossRef] [PubMed]
  18. K. Rottwitt and J. H. Povlsen, “Analyzing the fundamental properties of Raman amplification in optical fibers,” J. Lightwave Technol.23(11), 3597–3605 (2005).
    [CrossRef]
  19. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
    [CrossRef]
  20. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express18(14), 14778–14787 (2010).
    [CrossRef] [PubMed]
  21. A. M. Heidt, “Novel coherent supercontinuum light sources based on all-normal dispersion fibers,” (University of Stellenbosch, 2011).
  22. P. A. Bélanger and N. Bélanger, “Rms characteristics of pulses in nonlinear dispersive lossy fibers,” Opt. Commun.117(1-2), 56–60 (1995).
    [CrossRef]
  23. C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010).
    [CrossRef] [PubMed]
  24. L. A. Vazquez-Zuniga, H. S. Kim, Y. Kwon, and Y. Jeong, “Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber,” Opt. Express21(6), 7712–7725 (2013).
    [CrossRef] [PubMed]

2013 (1)

2011 (3)

2010 (4)

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express12(19), 4366–4371 (2004).
[CrossRef] [PubMed]

2002 (1)

1995 (1)

P. A. Bélanger and N. Bélanger, “Rms characteristics of pulses in nonlinear dispersive lossy fibers,” Opt. Commun.117(1-2), 56–60 (1995).
[CrossRef]

1982 (1)

G. Rosman, “High-order comb spectrum from stimulated raman scattering in a silica-core fibre,” Opt. Quantum Electron.14(1), 92–93 (1982).
[CrossRef]

1978 (2)

F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron.14(11), 855–859 (1978).
[CrossRef]

1969 (1)

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev.182(2), 482–494 (1969).
[CrossRef]

Adam, J. L.

Alam, S. U.

Bélanger, N.

P. A. Bélanger and N. Bélanger, “Rms characteristics of pulses in nonlinear dispersive lossy fibers,” Opt. Commun.117(1-2), 56–60 (1995).
[CrossRef]

Bélanger, P. A.

P. A. Bélanger and N. Bélanger, “Rms characteristics of pulses in nonlinear dispersive lossy fibers,” Opt. Commun.117(1-2), 56–60 (1995).
[CrossRef]

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Bourdon, P.

Brilland, L.

Brown, T.

Calvez, L.

Canat, G.

Champert, P. A.

Chartier, T.

Chen, K. K.

Codemard, C. A.

Cohen, L.

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron.14(11), 855–859 (1978).
[CrossRef]

Couderc, V.

Coulombier, Q.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Duan, Z. C.

Duhant, M.

El Amraoui, M.

Farrell, C.

Février, S.

Fink, Y.

Froehly, C.

Frosz, M. H.

Galeener, F.

F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Gao, W. Q.

Geils, R.

F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Hausmann, K.

Horak, P.

Jeong, Y.

Kim, H. S.

Kracht, D.

Kwon, Y.

Labonté, L.

Leproux, P.

Liao, M. S.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Lin, C.

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron.14(11), 855–859 (1978).
[CrossRef]

Malinowski, A.

Mechin, D.

Mikkelsen, J.

F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Morgner, U.

Mosby, W.

F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Nérin, P.

Neumann, J.

Nguyen, T. N.

Nilsson, J.

Ohishi, Y.

Povlsen, J. H.

Qin, G. S.

Rakich, P. T.

Randoux, S.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Renard, W.

Renversez, G.

Richardson, D. J.

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Rosman, G.

G. Rosman, “High-order comb spectrum from stimulated raman scattering in a silica-core fibre,” Opt. Quantum Electron.14(1), 92–93 (1982).
[CrossRef]

Rottwitt, K.

Roy, P.

Sayinc, H.

Smektala, F.

Soljacic, M.

Suret, P.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

Suzuki, T.

Tombelaine, V.

Toupin, P.

Troles, J.

Vazquez-Zuniga, L. A.

Wang, C. S.

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev.182(2), 482–494 (1969).
[CrossRef]

Yan, X.

Zhu, Z.

Appl. Phys. Lett. (1)

F. Galeener, J. Mikkelsen, R. Geils, and W. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron.14(11), 855–859 (1978).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

P. A. Bélanger and N. Bélanger, “Rms characteristics of pulses in nonlinear dispersive lossy fibers,” Opt. Commun.117(1-2), 56–60 (1995).
[CrossRef]

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

Opt. Express (8)

Z. Zhu and T. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express10(17), 853–864 (2002).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express12(19), 4366–4371 (2004).
[CrossRef] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express18(14), 14778–14787 (2010).
[CrossRef] [PubMed]

C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010).
[CrossRef] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
[CrossRef] [PubMed]

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, and D. Kracht, “Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode,” Opt. Express19(27), 25918–25924 (2011).
[CrossRef] [PubMed]

L. A. Vazquez-Zuniga, H. S. Kim, Y. Kwon, and Y. Jeong, “Adaptive broadband continuum source at 1200-1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber,” Opt. Express21(6), 7712–7725 (2013).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. Rosman, “High-order comb spectrum from stimulated raman scattering in a silica-core fibre,” Opt. Quantum Electron.14(1), 92–93 (1982).
[CrossRef]

Phys. Rev. (1)

C. S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev.182(2), 482–494 (1969).
[CrossRef]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Other (5)

J. Dudley and J. R. Taylor, Supercontinuum generation in optical fibers (Cambridge University, 2010).

A. M. Heidt, “Novel coherent supercontinuum light sources based on all-normal dispersion fibers,” (University of Stellenbosch, 2011).

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “SRS generation spanning over two octaves in a graded-index multimode optical fiber,” arXiv:1301.6203 (2013). http://arxiv.org/abs/1301.6203

T. S. McComb, “Power Scaling of Large Mode Area Thulium Fiber Lasers in Various Spectral and Temporal Regimes,” (University of Central Florida Orlando, Florida, 2009).

G. P. Agrawal, Nonlinear fiber optics, 5th ed. (Academic Press, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The experimental setup and (b) The propagation loss curve of the HGDF, the inset shows the cross section of the HGDF.

Fig. 2
Fig. 2

(a) The chromatic dispersion profiles and (b) effective areas of the fundamental mode of the HGDF and SMF-28.

Fig. 3
Fig. 3

(a) Temporal characteristics of the mode-locked seed laser, and the inset shows the measured seed pulses train. (b) The 1064 nm signal power versus the incident 976 nm pump power in the third-stage YDFA. (c) Output spectra of the amplified 1064 nm pulses, and the inset provides the detailed SPM-induced spectral broadening. The value in the legend of (c) means the pump power at 976 nm.

Fig. 4
Fig. 4

(a) Measured spectral evolution of the cascaded RS in 10 m HGDF with different pump peak powers. (b) Measured spectra of cascaded RS by pump peak powers of 951 and 8580 W. Si means the i-th order Stokes wave.

Fig. 5
Fig. 5

Measured spectral evolutions of the cascaded RS in the HGDF with different fiber lengths by pump peak powers of (a) 182 W, (b) 510 W, (c) 951 W, (d) 3380 W, (e) 6885 W and (f) 8580 W. The legend shows the different fiber lengths of the HGDF.

Fig. 6
Fig. 6

Output characteristics of the cascaded Raman fiber laser with different fiber lengths

Fig. 7
Fig. 7

Measured spectra of cascaded RS with different pump pulse widths.

Fig. 8
Fig. 8

Simulated results of cascaded RS in the HGDF at a pump peak power of 510 W. (a) Evolution of the spectrum along the fiber. (b) Spectral slices at selected propagation distances.

Fig. 9
Fig. 9

Simulated spectral evolutions of cascaded RS along the HGDF by different pump peak powers.

Tables (2)

Tables Icon

Table 1 Walk-off lengths of the pump pulse and Raman peaks in the HGDF.

Tables Icon

Table 2 Parameters used in the simulations of the cascaded RS in the HGDF.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C ˜ z L(ω) C ˜ (z,ω)=iγ(ω)[1+ ω ω 0 ω 0 ]F{C(z,t) R( T ' ) |C(z,T T ' ) | 2 d T ' ]},
γ(ω)= n 2 n 0 ω 0 /(c n eff (ω) A eff (ω) A eff ( ω 0 ) ),
h(T)= τ s 2 + τ ν 2 τ s τ ν 2 exp(t/ τ ν )sin(t/ τ s )Θ(t),
A( 0,T )= P 0 sech( 2ln( 1+ 2 )T/ T FWHM ),

Metrics