Abstract

One of the limitations of thermal reconfiguration in silicon photonics is its slow response time. At the same time, there is a tradeoff between the reconfiguration speed and power consumption in conventional reconfiguration schemes that poses a challenge in improving the performance of microheaters. In this work, we theoretically and experimentally demonstrate that the high thermal conductivity of silicon can be exploited to tackle this tradeoff through direct pulsed excitation of the device silicon layer. We demonstrate 85 ns reconfiguration of 4 µm diameter microdisks, which is one order of magnitude improvement over the conventional microheaters. At the same time, 2.06 nm/mW resonance wavelength shift is achieved in these devices, which is in a par with the best microheater architectures optimized for low-power operation. We also present a system-level model that precisely describes the response of the demonstrated microheaters. A differentially addressed optical switch is also demonstrated that shows the possibility of switching in opposite directions (i.e., OFF-to-ON and ON-to-OFF) using the proposed reconfiguration scheme.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]
  2. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
    [CrossRef]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
    [CrossRef]
  4. L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).
  5. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  6. P. Alipour, A. A. Eftekhar, A. H. Atabaki, Q. Li, S. Yegnanarayanan, C. K. Madsen, and A. Adibi, “Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators,” Opt. Express19(17), 15899–15907 (2011).
    [CrossRef] [PubMed]
  7. Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24(15), 1276–1278 (2012).
    [CrossRef]
  8. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  10. M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 Electro-optic silicon switch for on-chip photonic networks,” Opt. Express19(1), 47–54 (2011).
    [CrossRef] [PubMed]
  11. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  12. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
    [CrossRef]
  13. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express18(17), 18312–18323 (2010).
    [CrossRef] [PubMed]
  14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  15. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching, 67–68 (2007).
    [CrossRef]
  16. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett.35(7), 1013–1015 (2010).
    [CrossRef] [PubMed]
  17. Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
    [CrossRef]
  18. J. Song, Q. Fang, T. Liow, H. Cai, M. Yu, G. Lo, and D. Kwong, “High efficiency optical switches with heater-on-slab (HoS) structures,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThM2.
    [CrossRef]
  19. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100ns and low-loss reconfigurable silicon photonics,” 23rd Annual Meeting of the IEEE Photonics Society, 230–231 (2010).
    [CrossRef]
  20. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
    [CrossRef]
  21. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
    [CrossRef]
  22. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
    [CrossRef] [PubMed]
  23. C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
    [CrossRef]
  24. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express18(19), 19541–19557 (2010).
    [CrossRef] [PubMed]
  25. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express17(4), 2247–2254 (2009).
    [CrossRef] [PubMed]
  26. F. Kreith and M. Bohn, Principles of Heat Transfer (Harper & Row, 1986).
  27. The limitation of the thermal response time depends on the structure of the device. For structures that directly heat the Si layer the response time is 0.6 µs [20] and 2.9 µs (this work) with and without upper SiO2 cladding, respectively. For structures that the microheater is placed on top of the cladding, the response time is limited to 4 µs [13]. All of these numbers are based on BOX layer thickness of 1 µm, which is roughly the smallest thickness possible for improving the response time of the mciroheater without suffering from radiation loss to the substrate.
  28. M. Rasras, D. Gill, S. Patel, K. Tu, Y. Chen, A. White, A. Pomerene, D. Carothers, M. Grove, D. Sparacin, J. Michel, M. Beals, and L. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS Processes,” J. Lightwave Technol.25(1), 87–92 (2007).
    [CrossRef]
  29. H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008).
    [CrossRef]

2013 (1)

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

2012 (2)

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24(15), 1276–1278 (2012).
[CrossRef]

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

2011 (3)

2010 (6)

2009 (2)

2008 (1)

H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008).
[CrossRef]

2007 (2)

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2004 (1)

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

2003 (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

2002 (1)

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
[CrossRef]

Adibi, A.

Alipour, P.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24(15), 1276–1278 (2012).
[CrossRef]

P. Alipour, A. A. Eftekhar, A. H. Atabaki, Q. Li, S. Yegnanarayanan, C. K. Madsen, and A. Adibi, “Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators,” Opt. Express19(17), 15899–15907 (2011).
[CrossRef] [PubMed]

Asghari, M.

Assefa, S.

Atabaki, A. H.

Beals, M.

Bovington, J.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Bowers, J. E.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Capmany, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

Carothers, D.

Chen, Y.

Cheung, S.

Chien, H.

H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008).
[CrossRef]

Cunningham, J. E.

Danziger, S.

Ding, Z.

Djordjevic, S. S.

Doany, F. E.

Dong, P.

Eftekhar, A. A.

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Fang, A. W.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Fang, Q.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Feng, D.

Feng, N. N.

Fontaine, N. K.

Gasulla, I.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Gill, D.

Green, W. M.

Grove, M.

Guan, B.

Hill, C. M.

Hsu, C.

H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008).
[CrossRef]

Hui-Wen Chen, C.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Ibrahim, S.

Jahnes, C. V.

Jia, L.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Kash, J. A.

Kimerling, L.

Krishnamoorthy, A. V.

Lee, B. G.

Li, G.

Li, Q.

Liang, D.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Liang, H.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, Y.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Lloret, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

Lo, G. Q.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Luo, X.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Madsen, C. K.

Michel, J.

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

Okamoto, K.

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Patel, S.

Peters, J. D.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Pomerene, A.

Pomerene, A. T.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Qian, W.

Rasras, M.

Rooks, M. J.

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

Sancho, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schow, C. L.

Scott, R. P.

Seaford, L. L.

Seeds, A. J.

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
[CrossRef]

Sekaric, L.

Shafiiha, R.

Shah Hosseini, E.

Soltani, M.

Song, J. F.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Sparacin, D.

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Su, T.

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Tu, K.

Van Campenhout, J.

Vlasov, Y. A.

Wang, Z.

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

White, A.

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yang, M.

Yao, D.

H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008).
[CrossRef]

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

Yegnanarayanan, S.

Yoo, S. J.

Yu, M. B.

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

Zheng, X.

Appl. Phys. Lett. (1)

H. Chien, D. Yao, and C. Hsu, “Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric,” Appl. Phys. Lett.93(23), 231910 (2008).
[CrossRef]

IEEE J. Lightwav. Technol. (1)

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” IEEE J. Lightwav. Technol.31(4), 571–586 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett.24(15), 1276–1278 (2012).
[CrossRef]

Q. Fang, J. F. Song, X. Luo, L. Jia, M. B. Yu, G. Q. Lo, and Y. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett.24(5), 350–352 (2012).
[CrossRef]

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett.16(11), 2514–2516 (2004).
[CrossRef]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech.50(3), 877–887 (2002).
[CrossRef]

C. Hui-Wen Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (9)

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express17(4), 2247–2254 (2009).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N. N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express18(19), 19541–19557 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4x4 Electro-optic silicon switch for on-chip photonic networks,” Opt. Express19(1), 47–54 (2011).
[CrossRef] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011).
[CrossRef] [PubMed]

P. Alipour, A. A. Eftekhar, A. H. Atabaki, Q. Li, S. Yegnanarayanan, C. K. Madsen, and A. Adibi, “Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators,” Opt. Express19(17), 15899–15907 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Other (7)

L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
[CrossRef]

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching, 67–68 (2007).
[CrossRef]

J. Song, Q. Fang, T. Liow, H. Cai, M. Yu, G. Lo, and D. Kwong, “High efficiency optical switches with heater-on-slab (HoS) structures,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThM2.
[CrossRef]

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Sub-100ns and low-loss reconfigurable silicon photonics,” 23rd Annual Meeting of the IEEE Photonics Society, 230–231 (2010).
[CrossRef]

F. Kreith and M. Bohn, Principles of Heat Transfer (Harper & Row, 1986).

The limitation of the thermal response time depends on the structure of the device. For structures that directly heat the Si layer the response time is 0.6 µs [20] and 2.9 µs (this work) with and without upper SiO2 cladding, respectively. For structures that the microheater is placed on top of the cladding, the response time is limited to 4 µs [13]. All of these numbers are based on BOX layer thickness of 1 µm, which is roughly the smallest thickness possible for improving the response time of the mciroheater without suffering from radiation loss to the substrate.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the microdisk on SOI substrate with Type I and II microheater architectures. (b) Hz field profile of the first radial-order TE-like mode of a 5 µm diameter microdisk on SOI substrate. (c) The structure of the Type I and II device architectures (as shown in (a)) used in the simulation of heat transport. The actual values of the dimensions marked in this figure are tabulated in Table 1.

Fig. 2
Fig. 2

(a) Modeling result of the step response of the microdisk temperature at the location of the maximum of the mode energy for 1 mW power dissipation in the microheater. The red and blue curves show the result for the Type I and Type II microheaters, respectively. The insets show the profile of the temperature at the cross-section of the two devices at stead-state. (b) Modeling result of the impulse response of the microdisk temperature for 1 nJ impulse dissipation. The inset shows the impulse response of the Type II microheater in the first 100 ns.

Fig. 3
Fig. 3

(a) False color SEM of the add-drop filter using Type II microheater fabricated directly on the Si layer at the center of a microdisk resonator with a diameter of 5 µm. (b) Transmission spectrum at the drop port of the device shown in (a) with (blue curve) and without (red curve) signal applied to the microheater (Pheat). (c) Blue and red curves show the step response of the reconfigurable filter in the rising and falling edges of the applied signal, respectively. (d) Blue curve shows the experimental result of the response of the drop port of the filter to a 25 ns pulse applied to the microheater. Red curve shows the result of the proposed system-level model (shown in 4(a)) fitted to the experimental data.

Fig. 4
Fig. 4

(a) The system-level model for the thermal response of the device shown in Fig. 3(a). (b) Excitation signal for fast reconfiguration of the add-drop filter derived using Eq. (7). (c) The experimental response of the device to the pulsed excitation signal (shown in (b)). Inset shows a close up of the response in the first 200 ns.

Fig. 5
Fig. 5

(a) Optical micrograph of the switch with thermally tunable phase shifters in the two arms of a MZI. In this architecture, the input and output couplers are 3dB; the diameters of both microdisk resonators are 5 µm; and the rest of the parameters are the same as those in the device shown in Fig. 3(a). (b) Top plot: The power dissipated in each of the microheaters shown in (a). The initial pulses are not shown and only the steady-state value is plotted. Bottom plot: The output of the switch in (a) as power (shown in the top plot) is dissipated in the two microheaters.

Fig. 6
Fig. 6

(a) The rise/fall time (blue curve) and the steady-state temperature rise (red curve) of a 5 µm diameter microdisk for 1 mW power dissipation in Type II microheater vs. tBOX. (b) The impulse response of the microdisk temperature to a 1 nJ impulse dissipated in the microheater for tBOX = 1 µm (blue curve) and tBOX = 6 µm (red curve).

Fig. 7
Fig. 7

(a) and (b) Distribution of temperature in Type II microheater at t = 0.4 µs and t = 4 µs for a 1 mW step signal applied to the heater at t = 0, respectively. The black arrows show the heat flux in the device. Heat flux is scales by a factor of 5 in the BOX and cladding layers for better visualization. Here, we have also considered a sloped via to exactly model the actual devices experimentally demonstrated in this work.

Fig. 8
Fig. 8

(a) The block diagram of the system-level representation of the reconfigurable microdisk device including the pre-emphasis filter that is used to compensate for the slow response of heat diffusion. (b) The block diagram of the system-level representation of the excitation signal including the seed input pulse, p(t), and the pre-emphasis filter. The three components of the pre-emphasis filter (i.e., differentiator, proportional term, and first-order system) are shown in the dashed box.

Tables (3)

Tables Icon

Table 1 Dimensions of the structure in Fig. 1(c) used in simulations.

Tables Icon

Table 3 Parameters of the system-level model fitted to the experimental data in Fig. 4(d).

Tables Icon

Table 2 Comparison of the demonstrated microheater with the literature.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h d ( t )={ t t d        0<t< t d 1 t t d         t d <t<2 t d 0          otherwise ,
h c ( t )=exp( t τ f )+α exp( t τ s ),
H pre ( jω )=  [ H d ( jω ) ] 1 = [   1 jω+ τ f 1 +  α jω+ τ s 1 ] 1 .
H pre ( jω )= A[  jω+B+  C jω τ eff +1 ],
{ 1 τ eff = 1 1+α ( 1 τ s + α τ f ) A= 1 1+α B= 1 τ s + 1 τ f 1 τ eff C=( 1 τ eff 1 τ s )( 1 τ eff 1 τ f ) .
T( jω )=  [ P( jω ). 1 jω .  H pre ( jω ) ] Output of the preemphasis filter [ H d ( jω ) H c ( jω ) P( jω ) ] System transfer function , = H d ( jω ) jω
s( t )=A [p( t ) +   τ eff τ s τ f  p( t )*u( t )   τ eff 2 C( e t p τ eff 1 ) e   t τ eff  u( t )],

Metrics