Abstract

We demonstrate an all-optical generation of Brillouin dynamic grating (BDG) in a single-mode dispersion-shifted fiber (DSF). The feature of multiple-peak Brillouin gain spectrum (BGS) owing to the existence of the multiple acoustic modes in the single-mode DSF is utilized. Two inharmonic lock-in detections are newly introduced to characterize the BGS and the frequency-maintained or frequency-shifted BDG reflection. The frequency-shifted property of the BDG in the DSF with hundreds of MHz can find great potential applications in optical fiber sensing or all-optical signal processing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett.33(9), 926–928 (2008).
    [CrossRef] [PubMed]
  2. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009).
    [CrossRef] [PubMed]
  3. Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett.35(2), 193–195 (2010).
    [CrossRef] [PubMed]
  4. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
    [CrossRef]
  5. W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express19(3), 2363–2370 (2011).
    [CrossRef] [PubMed]
  6. Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” IEEE Photon. Technol. Lett.22(18), 1364–1366 (2010).
    [CrossRef]
  7. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010).
    [CrossRef]
  8. K. Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express17(12), 10344–10349 (2009).
    [CrossRef] [PubMed]
  9. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express20(6), 6157–6162 (2012).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  11. S. Afshar V, G. A. Ferrier, X. Bao, and L. Chen, “Effect of the finite extinction ratio of an electro-optic modulator on the performance of distributed probe-pump Brillouin sensor systems,” Opt. Lett.28(16), 1418–1420 (2003).
    [CrossRef] [PubMed]
  12. D. P. Zhou, L. Chen, and X. Bao, “Polarization-decoupled four-wave mixing based on stimulated Brillouin scattering in a polarization-maintaining fiber,” J. Opt. Soc. Am. B30(4), 821–828 (2013).
    [CrossRef]
  13. K. Y. Song, “Operation of Brillouin dynamic grating in single-mode optical fibers,” Opt. Lett.36(23), 4686–4688 (2011).
    [CrossRef] [PubMed]
  14. S. Li, M. J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett.37(22), 4660–4662 (2012).
    [CrossRef] [PubMed]
  15. C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett.13(10), 1094–1096 (2001).
    [CrossRef]
  16. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004).
    [CrossRef]
  17. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  18. W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express16(14), 10006–10017 (2008).
    [CrossRef] [PubMed]
  19. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
    [CrossRef] [PubMed]
  20. V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett.33(23), 2848–2850 (2008).
    [CrossRef] [PubMed]
  21. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

2011 (2)

2010 (4)

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett.35(2), 193–195 (2010).
[CrossRef] [PubMed]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” IEEE Photon. Technol. Lett.22(18), 1364–1366 (2010).
[CrossRef]

2009 (2)

2008 (4)

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett.13(10), 1094–1096 (2001).
[CrossRef]

Afshar V, S.

Antman, Y.

Bao, X.

Bickham, S. R.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Chen, L.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett.13(10), 1094–1096 (2001).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett.13(10), 1094–1096 (2001).
[CrossRef]

Chin, S.

Chowdhury, D. Q.

Chujo, W.

Dong, Y.

Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” IEEE Photon. Technol. Lett.22(18), 1364–1366 (2010).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett.35(2), 193–195 (2010).
[CrossRef] [PubMed]

Ferrier, G. A.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

He, Z.

Hotate, K.

Kalosha, V. P.

Kobyakov, A.

Koyamada, Y.

Kumar, S.

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett.13(10), 1094–1096 (2001).
[CrossRef]

Lee, K.

Lee, S. B.

Li, M. J.

Li, S.

Li, W.

Mishra, R.

Mizuno, Y.

Nakamura, S.

Primerov, N.

Ruffin, A. B.

Sales, S.

Sancho, J.

Sato, S.

Sauer, M.

Song, K. Y.

Sotobayashi, H.

Thévenaz, L.

Vodhanel, R. S.

Wang, F.

Zadok, A.

Zhou, D. P.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zou, W.

IEEE Photon. Technol. Lett. (3)

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett.22(8), 526–528 (2010).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “High-spatial-resolution time-domain simultaneous strain and temperature sensor using Brillouin scattering and birefringence in a polarization-maintaining fiber,” IEEE Photon. Technol. Lett.22(18), 1364–1366 (2010).
[CrossRef]

C. C. Lee, P. W. Chiang, and S. Chi, “Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett.13(10), 1094–1096 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express20(6), 6157–6162 (2012).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express19(3), 2363–2370 (2011).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

K. Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express17(12), 10344–10349 (2009).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding,” Opt. Express16(14), 10006–10017 (2008).
[CrossRef] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

Opt. Lett. (6)

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of BDG in DSF. (a): Orientation of optical injection. (b) and (c): Two different cases of the optical frequency relation among the pump, probe (Stokes), read, and BDG reflection.

Fig. 2
Fig. 2

Experimental setup of characterizing BDG in a DSF.DFB-LD: distributed feedback laser diode; TL: tunable laser; SSBM: single sideband modulator; EDFA: erbium-doped fiber amplifier; PC: polarization controller; ISO: isolator; CIR: circulator; PM: power meter; LIA: lock-in amplifier; IM: intensity modulator; DSF: dispersion-shifted fiber; VOA: variable optical attenuator; PD: photo-detector; DAQ: data acquisition card.

Fig. 3
Fig. 3

(a) BGS in DSF measured at three optical wavelengths (or frequencies). The solid curves denote the four-peak Lorenz fitting to the experimental data (symbols). (b) Dependence of the resonance frequencies of the first-order and second-order peaks on the optical frequency. The solid lines correspond to the linear fitting to the experimental data (symbols).

Fig. 4
Fig. 4

Qualitative characterization of BDG in a DSF measured by an OSA. The pump, probe, and read powers are 19.0 dBm, −12.5 dBm, and 17.5 dBm, respectively.

Fig. 5
Fig. 5

Quantitative characterization of the BDG reflection measured by the LIA1 (a) and LIA2 (b). The solid curves in (a) and (b) denote the four-peak Lorenz fitting to the experimental data (symbols). (c) The constant Brillouin gain measured by the LIA1 and the peak power of the first-order or second-order peak in the BDG reflection measured by the LIA2 as functions of the optical pump power. The absolute reflectivity of BDG measured by OSA is also shown.

Tables (1)

Tables Icon

Table 1 Parameters of BGS and BDG in a single-mode DSF characterized at 1551.5 nm

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ν 1 f 1 f 1 '= ν B = ν (1) ,
ν 1 (1) = ν 2 (1) = ν B ,
ν 1 (1) = 2 n 1 c V a (1) f 1 ,
ν 2 (1) = 2 n 2 c V a (1) f 2 ,
ν 2 (i) = 2n c V a (i) f 2 ,
f 2 ν 2 (i) = f 1 ν 1 (1) ,
Δf f 2 f 1 = ν 1 (i) ν 1 (1) 12n V a (i) /c ,
Δf ν 1 (i) ν 1 (1) ,
ξ BDG = A eff ao (1) A eff ao (i) ,

Metrics