Abstract

A defect-enhanced silicon photodiode and heater are integrated with and used to thermally stabilize a microring modulator. These optoelectronic components are interfaced with external control circuitry to create a closed-looped feedback system for thermally stabilizing the microring modulator. The thermal stabilization system enables the microring modulator to provide error-free 5-Gb/s modulation while being subjected to thermal fluctuations that would normally render it inoperable.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
    [CrossRef]
  2. N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
    [CrossRef]
  3. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
    [CrossRef]
  4. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
    [CrossRef] [PubMed]
  5. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  6. R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
    [CrossRef]
  7. D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
    [CrossRef]
  8. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2H.7.
    [CrossRef]
  9. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  10. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4I.5.
    [CrossRef]
  11. V. Michal, C. Premont, G. Pillonet, and N. Abouchi, “Single active element PID controllers,” Radioelektronika,201020th International Conference.
  12. Y.-H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” Proc. IEEE Optical Interconnects Conference (IEEE, 2013), paper MA3.
  13. C. J. B. Fayomi, M. Sawan, and G. W. Roberts, “Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial,” Analog Integr. Circuits Signal Process.39(1), 21–38 (2004).
    [CrossRef]
  14. D. Brunina, X. Zhu, K. Padmaraju, L. Chen, M. Lipson, and K. Bergman, “10-Gb/s WDM optically-connected memory system using silicon microring modulators,” Proc. European Conference on Optical Communications (Optical Society of America, 2012), paper Mo.2.A.5.
    [CrossRef]
  15. D. Livshits, D. Yin, A. Gubenko, I. Krestnikov, S. Mikhrin, A. Kovsh, and G. Wojcik, “Cost-effective WDM optical interconnects enabled by quantum dot comb lasers,” Proc. Optoelectronic Interconnects and Component Integration IX (SPIE, 2010).
  16. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
    [CrossRef]
  17. M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (IEEE, 2011), 978–1-4577–0233–5/11.
  18. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]

2013

N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
[CrossRef]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
[CrossRef]

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

2012

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

2011

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

2010

2009

2004

C. J. B. Fayomi, M. Sawan, and G. W. Roberts, “Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial,” Analog Integr. Circuits Signal Process.39(1), 21–38 (2004).
[CrossRef]

Asghari, M.

Baets, R.

Bergman, K.

N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
[CrossRef]

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

Bogaerts, W.

Chan, J.

Chen, L.

Cunningham, J. E.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

De La Rue, R. M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Dong, P.

Driscoll, J. B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Dumon, P.

Fayomi, C. J. B.

C. J. B. Fayomi, M. Sawan, and G. W. Roberts, “Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial,” Analog Integr. Circuits Signal Process.39(1), 21–38 (2004).
[CrossRef]

Feng, D.

Geis, M. W.

Grein, M. E.

Grote, R. R.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Han, X.

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Jessop, P. E.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Jian, X.

Knights, A. P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Lennon, D. M.

Lentine, A. L.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
[CrossRef]

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Liang, H.

Lipson, M.

Logan, D. F.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Luo, Y.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Lyszczarz, T. M.

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Mineo, C.

N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
[CrossRef]

Morthier, G.

Mountain, D.

N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
[CrossRef]

Ophir, N.

N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
[CrossRef]

Osgood, R. M.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Padmaraju, K.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express20(27), 27999–28008 (2012).
[CrossRef] [PubMed]

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Qian, W.

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Roberts, G. W.

C. J. B. Fayomi, M. Sawan, and G. W. Roberts, “Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial,” Analog Integr. Circuits Signal Process.39(1), 21–38 (2004).
[CrossRef]

Sawan, M.

C. J. B. Fayomi, M. Sawan, and G. W. Roberts, “Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial,” Analog Integr. Circuits Signal Process.39(1), 21–38 (2004).
[CrossRef]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Shafiiha, R.

Shubin, I.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Sorel, M.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Souhan, B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

Spector, S. J.

Teng, J.

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Trotter, D. C.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
[CrossRef]

Velha, P.

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Watts, M. R.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
[CrossRef]

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

Yoon, J. U.

Zhang, H.

Zhao, M.

Zheng, X.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Zortman, W. A.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
[CrossRef]

Analog Integr. Circuits Signal Process.

C. J. B. Fayomi, M. Sawan, and G. W. Roberts, “Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial,” Analog Integr. Circuits Signal Process.39(1), 21–38 (2004).
[CrossRef]

IEEE Micro

N. Ophir, D. Mountain, C. Mineo, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro33(1), 54–67 (2013).
[CrossRef]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit error rate monitoring for active wavelength control of silicon microphotonic resonant modulators,” IEEE Micro33(1), 42–52 (2013).
[CrossRef]

IEEE Photon. J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J.3(3), 567–579 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. M. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55 µm,” IEEE Photon. Technol. Lett.25(1), 67–70 (2013).
[CrossRef]

D. F. Logan, P. Velha, M. Sorel, R. M. De La Rue, P. E. Jessop, and A. P. Knights, “Monitoring and tuning micro-ring properties using defect-enhanced silicon photodiodes at 1550 nm,” IEEE Photon. Technol. Lett.24(4), 261–263 (2012).
[CrossRef]

Opt. Express

Proc. IEEE

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE97(7), 1337–1361 (2009).
[CrossRef]

Other

M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in Custom Integrated Circuits Conference (IEEE, 2011), 978–1-4577–0233–5/11.

D. Brunina, X. Zhu, K. Padmaraju, L. Chen, M. Lipson, and K. Bergman, “10-Gb/s WDM optically-connected memory system using silicon microring modulators,” Proc. European Conference on Optical Communications (Optical Society of America, 2012), paper Mo.2.A.5.
[CrossRef]

D. Livshits, D. Yin, A. Gubenko, I. Krestnikov, S. Mikhrin, A. Kovsh, and G. Wojcik, “Cost-effective WDM optical interconnects enabled by quantum dot comb lasers,” Proc. Optoelectronic Interconnects and Component Integration IX (SPIE, 2010).

K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2013), paper OM2H.7.
[CrossRef]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Integrated CMOS compatible low power 10Gbps silicon photonic heater-modulator,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4I.5.
[CrossRef]

V. Michal, C. Premont, G. Pillonet, and N. Abouchi, “Single active element PID controllers,” Radioelektronika,201020th International Conference.

Y.-H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” Proc. IEEE Optical Interconnects Conference (IEEE, 2013), paper MA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the integrated device (not to scale), and SEM image of fully processed device (inset). Waveguide geometry and doping profile for the (b) silicon photodiode and (c) depletion-mode microring modulator.

Fig. 2
Fig. 2

Schematic of the control system, highlighting the separation of the high-speed data transmission from the low-speed stabilization of thermal fluctuations.

Fig. 3
Fig. 3

(a) Measured photoresponse of the drop-port photodiode for when the microring is in its passive state, as well as for when it is modulated. (b-e) Generated 5-Gb/s eye diagrams as indicated at several points on the measured photoresponse of the modulated microring.

Fig. 4
Fig. 4

(a) Experimental setup. The 647-nm visible laser is used to simulate thermal fluctuations. (b) Circuitry comprising the control system. Indicated in the dashed boxes are the on-chip integrated components.

Fig. 5
Fig. 5

Oscilloscope measurements (with and without the control system) of the (a) voltage applied to the heater, and the (b) voltage generated from the photodiode (following the TIA) measuring the mean modulation power.

Fig. 6
Fig. 6

Eye diagrams of 5-Gb/s microring-modulated optical signal without the control system (Ctrl) in (a) a stable thermal environment, and (b) under thermal fluctuations (T.F.). Similarly, the microring modulation with the control system in (c) a stable thermal environment, and (d) under thermal fluctuations. (e) BER measurements corresponding to eye diagrams in (a), (c), and (d).

Fig. 7
Fig. 7

(a) Diagram of an array of microring resonators and a comb laser source with equivalent spacing. Ambient temperature changes will create relative offsets between the two grids, but this can be corrected by tuning the microring to the laser, with the maximum tuning range equivalent to the channel spacing (the microring-wavelength arrangement will be reshuffled if the microring needs to tune past this point). (b) Estimated average power consumption for thermally stabilizing a single microring modulator. For larger channel spacings (top axis), the microring modulator may have to be tuned across a larger temperature range (bottom axis).

Metrics