Abstract

Silicon nitride is demonstrated as a high performance and cost-effective solution for dense integrated photonic circuits in the visible spectrum. Experimental results for nanophotonic waveguides fabricated in a standard CMOS pilot line with losses below 0.71dB/cm in an aqueous environment and 0.51dB/cm with silicon dioxide cladding are reported. Design and characterization of waveguide bends, grating couplers and multimode interference couplers (MMI) at a wavelength of 660 nm are presented. The index contrast of this technology enables high integration densities with insertion losses below 0.05 dB per 90° bend for radii as small as 35 µm. By a proper design of the buried oxide layer thickness, grating couplers with efficiencies above 38% for the TE polarization have been obtained.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. 20th Lasers and Electro-Optics Soc.(LEOS), 848-849 (2007).
  2. D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE 8265, 826507, 826507-9 (2012).
    [CrossRef]
  3. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
    [CrossRef]
  4. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [CrossRef] [PubMed]
  5. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [CrossRef]
  7. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [CrossRef]
  8. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
    [CrossRef]
  9. J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
    [CrossRef]
  10. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [CrossRef] [PubMed]
  11. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
    [CrossRef]
  12. G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
    [CrossRef]
  13. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
    [CrossRef] [PubMed]
  14. J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
    [CrossRef] [PubMed]
  15. C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
    [CrossRef]
  16. G. Maire, L. Vivien, G. Sattler, A. Kaźmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16(1), 328–333 (2008).
    [CrossRef] [PubMed]
  17. A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
    [CrossRef]
  18. J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
    [CrossRef]
  19. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
    [CrossRef] [PubMed]
  20. T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
    [CrossRef]
  21. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  22. C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express 18(14), 15189–15200 (2010).
    [CrossRef] [PubMed]
  23. F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [CrossRef]
  24. W. Sfar Zaoui, M. Félix Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “High-Efficient CMOS-compatible grating couplers with backside metal mirror,” Europ. Conf. Opt. Comm. (ECOC), Amsterdam, Netherlands, Sept. 16-20 (2012).
  25. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
    [CrossRef] [PubMed]
  26. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
    [CrossRef]

2012 (4)

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE 8265, 826507, 826507-9 (2012).
[CrossRef]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

2011 (2)

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

2010 (7)

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
[CrossRef]

C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express 18(14), 15189–15200 (2010).
[CrossRef] [PubMed]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and Í. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,” Opt. Lett. 35(19), 3243–3245 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (2)

2005 (1)

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

2004 (1)

1999 (1)

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
[CrossRef]

1994 (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

1977 (1)

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Absil, P.

Aimez, V.

Alonso-Ramos, C.

Asghari, M.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE 8265, 826507, 826507-9 (2012).
[CrossRef]

Ayre, M.

Bach, F.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Baets, R.

Bedard, D.

Bellutti, P.

Besse, P. A.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Bogaerts, W.

Buhl, L.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
[CrossRef]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

Cassan, E.

Charette, P.

Cheben, P.

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Chen, Y. K.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
[CrossRef]

Cheng, L.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Crivellari, M.

Daldosso, N.

Densmore, A.

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Dhakal, A.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
[CrossRef]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Feng, D.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE 8265, 826507, 826507-9 (2012).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Foster, M. A.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Freude, W.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Gaeta, A. L.

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Gehringer, D.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
[CrossRef]

Giannone, D.

Girardini, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Gorin, A.

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Griol, A.

Grondin, E.

Guilfoyle, P.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

Gylfason, K. B.

Halir, R.

Hartinger, K.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Hill, D.

Hillerkuss, D.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Hochberg, M.

Holtzwarth, R.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Janz, S.

Jaouad, A.

Jordan, M.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Kazmierczak, A.

Kippenberg, T. J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Komorowska, K.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Koos, C.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Krauss, T. F.

Laere, F. V.

Lapointe, J.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Lepage, G.

Leuthold, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Levy, J. S.

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

Lipson, M.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Louderback, D.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

Luff, B. J.

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE 8265, 826507, 826507-9 (2012).
[CrossRef]

Lui, A.

Ma, R.

Maire, G.

Marris-Morini, D.

Melchior, H.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Melchiorri, M.

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Molina-Fernández, I.

Molina-Fernández, Í.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Okawachi, Y.

Ortega-Moñux, A.

Parriaux, O. M.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
[CrossRef]

Pavesi, L.

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Pfeifle, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Pickrell, G.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

Poon, A. W.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

Pucker, G.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Riboli, F.

Riemensberger, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Roelkens, G.

Sanchez, B.

Sattler, G.

Scherer, A.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

Schmid, J. H.

Schrauwen, J.

Selvaraja, S.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Sohlström, H.

Soldano, L. B.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12(6), 1004–1009 (1994).
[CrossRef]

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Subramanian, A. Z.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

Taillaert, D.

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Thourhout, D. V.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

Usievich, B. A.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
[CrossRef]

Van Thourhout, D.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Verheyen, P.

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform,” Opt. Express 18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Vermeulen, D.

Vivien, L.

Voirin, G.

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Weimann, C.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Witzens, J.

J. Witzens and M. Hochberg, “Optical detection of target molecule induced aggregation of nanoparticles by means of high-Q resonators,” Opt. Express 19(8), 7034–7061 (2011).
[CrossRef] [PubMed]

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

Xu, D.-X.

Zavargo-Peche, L.

Appl. Phys. (Berl.) (1)

T. Tamir and S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977).
[CrossRef]

Appl. Phys. Lett. (2)

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86(10), 101105 (2005).
[CrossRef]

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. R. Doerr, L. Cheng, Y. K. Chen, and L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photon. Technol. Lett. 22(19), 1461 (2010).
[CrossRef]

A. Z. Subramanian, S. Selvaraja, P. Verheyen, A. Dhakal, K. Komorowska, and R. Baets, “Near-infrared grating couplers for silicon nitride photonic wires,” IEEE Photon. Technol. Lett. 24(19), 1700–1703 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Lab Chip (1)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[CrossRef] [PubMed]

Nat. Photonics (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. SPIE (2)

G. Voirin, D. Gehringer, O. M. Parriaux, and B. A. Usievich, “Si3N4/SiO2/Si waveguide grating for fluorescent biosensors,” Proc. SPIE 3620, 109–116 (1999).
[CrossRef]

D. Feng, B. J. Luff, and M. Asghari, “Recent advances in manufactured silicon photonics integrated circuits,” Proc. SPIE 8265, 826507, 826507-9 (2012).
[CrossRef]

Other (3)

G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. 20th Lasers and Electro-Optics Soc.(LEOS), 848-849 (2007).

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-Based Optical Frequency Combs for High-Bitrate WDM Data Transmission,” Optical Fiber Communication Conference, Los Angeles, USA, Mar. 4 (2012).
[CrossRef]

W. Sfar Zaoui, M. Félix Rosa, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “High-Efficient CMOS-compatible grating couplers with backside metal mirror,” Europ. Conf. Opt. Comm. (ECOC), Amsterdam, Netherlands, Sept. 16-20 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Power contained in the top H2O cladding as a function of the waveguide thickness for a width of 700 nm and a wavelength of 660 nm.

Fig. 2
Fig. 2

2D schematic side view of the grating coupler.

Fig. 3
Fig. 3

Simulation results for decay length (a) and directionality (b) as a function of the bottom and top SiO2 layer thicknesses. (c) Grating coupling efficiency for a Gaussian input with FWHM = 11.5 µm. (d) Diffraction angle and grating coupler efficiency for different wavelengths.

Fig. 4
Fig. 4

Anti-correlation between decay length and directionality as a function of the bottom SiO2 thickness (left). Correlation between decay length and directionality as a function of the top SiO2 thickness (right)

Fig. 5
Fig. 5

Layout of the 1x4 multimode interference coupler

Fig. 6
Fig. 6

Bend loss as a function of the number of bends for different curvature radii. Grating coupler insertion loss obtained from a reference loop has been subtracted.

Fig. 7
Fig. 7

a) Dark field image of the fabricated gratings loop. b) Power at the output grating normalized to the input power as a function of the incident angle (relative to the optimum coupling angle).

Fig. 8
Fig. 8

(a) CCD camera image of the diffracted power at the output grating coupler (left) and reflected power at the input grating coupler (right), b) Power distribution along the x axis (z = 0) and c) along the z axis (propagation direction, x = 0).

Fig. 9
Fig. 9

(a) Fluorescence image of light propagating inside an MMI. Water with fluorescent dies was used as a top cladding. (b) Measurement results of efficiency and imbalance.

Tables (3)

Tables Icon

Table 1 Spatial (Δx) and angular (Δθ) alignment tolerances for gratings with different decay lengths

Tables Icon

Table 2 Efficiency and Imbalance for maximum expected fabrication deviations

Tables Icon

Table 3 Propagation loss (dB/cm) for SiO2 clad and H2O clad waveguides with different width

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eff λ 1 Λ = n c λ sin( θ c )
ρ= η ov η dir
η ov = | 1 2 ( E × H gauss * + E gauss * × H )d S | 2
Efficiency=( P 1 + P 2 + P 3 + P 4 )/ P in
Imbalance=(Max( P 1 , P 2 , P 3 , P 4 )Min( P 1 , P 2 , P 3 , P 4 ))/mean( P 1 , P 2 , P 3 , P 4 )

Metrics