Abstract

A wide angle microscanning architecture is presented in which the angular deflection is achieved by displacing the principle axis of a curved silicon micromirror of acylindrical shape, with respect to the incident beam optical axis. The micromirror curvature is designed to overcome the possible deformation of the scanned beam spot size during scanning. In the presented architecture, the optical axis of the beam lays in-plane with respect to the substrate opening the door for a completely integrated and self-aligned miniaturized scanner. A micro-optical bench scanning device, based on translating a 200 μm focal length micromirror by an electrostatic comb-drive actuator, is implemented on a silicon chip. The microelectromechanical system has a resonance frequency of 329 Hz and a quality factor of 22. A single-mode optical fiber is used as the optical source and inserted into a micromachined groove fabricated and lithographically aligned with the microbench. Optical deflection angles up to 110 degrees are demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
    [CrossRef]
  2. Z. Yaqoob and N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt.41(26), 5568–5573 (2002).
    [CrossRef] [PubMed]
  3. S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999).
    [CrossRef] [PubMed]
  4. T. Matsuda, F. Abe, and H. Takahashi, “Laser printer scanning system with a parabolic mirror,” Appl. Opt.17(6), 878–884 (1978).
    [CrossRef] [PubMed]
  5. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
    [CrossRef] [PubMed]
  6. M. H. Kiang, O. Solgaard, R. S. Muller, and K. Y. Lau, “Surface-micromachined electrostatic-comb driven scanning micromirrors for barcode scanners,” in Proceedings of the ninth annual international workshop on Micro Electro Mechanical Systems, (IEEE, 1996), pp. 192–197.
  7. W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Proceedings of IEEE/LEOS international conference on Optical MEMs and Nanophotonics, (IEEE, 2008), pp. 31–32.
    [CrossRef]
  8. H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
    [CrossRef]
  9. C. L. Arrasmith, D. L. Dickensheets, and A. Mahadevan-Jansen, “MEMS-based handheld confocal microscope for in-vivo skin imaging,” Opt. Express18(4), 3805–3819 (2010).
    [CrossRef] [PubMed]
  10. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett.28(8), 628–630 (2003).
    [CrossRef] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004).
    [CrossRef] [PubMed]
  12. X. Mu, G. Zhou, H. Yu, Y. Du, H. Feng, J. M. L. Tsai, and F. S. Chau, “Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe,” Opt. Express20(6), 6325–6339 (2012).
    [CrossRef] [PubMed]
  13. T. Iseki, M. Okumura, and T. Sugawara, “High speed and wide angle deflection optical MEMS scanner using piezoelectric actuation,” IEEE J. Trans. Elec. Electron. Eng.5(3), 361–368 (2010).
    [CrossRef]
  14. J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express18(12), 12065–12075 (2010).
    [CrossRef] [PubMed]
  15. A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).
  16. S. D. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).
  17. O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems (Springer, 2008).
  18. Y. Wang, K. Kumar, L. Wang, and X. Zhang, “Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes,” Opt. Express20(6), 6657–6668 (2012).
    [CrossRef] [PubMed]
  19. C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express15(18), 11154–11166 (2007).
    [CrossRef] [PubMed]
  20. H. C. Park, C. Song, and K. H. Jeong, “Micromachined lens microstages for two-dimensional forward optical scanning,” Opt. Express18(15), 16133–16138 (2010).
    [CrossRef] [PubMed]
  21. J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012).
    [CrossRef]
  22. D. A. Khalil and H. Haddara, “Ultra-wide angle MEMS scanner architecture,” U.S. patent 8411340 B2 (2013).
  23. Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, “Wide steering angle microscanner based on curved surface,” in Proceedings of SPIE MOEMS-MEMS (SPIE, 2013), pp. 86160F.
    [CrossRef]
  24. Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, “Aspherical optical surfaces and optical scanners,” U.S. patent application 61676336 (2012).
  25. F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
    [CrossRef]
  26. H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
    [CrossRef]
  27. Y. Nada, M. Medhat, M. Nagi, F. Marty, B. Saadany, and T. Bourouina, “Mechanical displacement multiplier: 250 μm stable travel range MEMS actuator using frictionless simple compliant structures,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 1161–1164.
  28. M. Medhat, Y. Nada, B. Mortada, and B. Saadany, “Long range travel MEMS actuator,” U.S. patent application 12761621 (2010).
  29. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996).
    [CrossRef]
  30. Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).
  31. A. E. Siegman, Lasers University Science Books (Mill Valley, 1986).
  32. P. F. Goldsmith, Quasioptical Systems (Chapman & Hall, 1998).
  33. Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).
  34. Y. M. Sabry, T. E. Bourouina, B. A. Saadany, and D. A. M. Khalil, “Integrated monolithic optical bench containing 3-D curved optical elements and methods of its fabrication,” U.S. patent application 20130100424 (2013).
  35. ISO Standard 11146, “Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005).

2013 (1)

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).

2012 (5)

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012).
[CrossRef]

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

X. Mu, G. Zhou, H. Yu, Y. Du, H. Feng, J. M. L. Tsai, and F. S. Chau, “Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe,” Opt. Express20(6), 6325–6339 (2012).
[CrossRef] [PubMed]

Y. Wang, K. Kumar, L. Wang, and X. Zhang, “Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes,” Opt. Express20(6), 6657–6668 (2012).
[CrossRef] [PubMed]

2010 (4)

2007 (4)

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).

C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express15(18), 11154–11166 (2007).
[CrossRef] [PubMed]

2005 (2)

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
[CrossRef] [PubMed]

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

1999 (1)

S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999).
[CrossRef] [PubMed]

1996 (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

1978 (1)

Abe, F.

Arrasmith, C. L.

Boppart, S. A.

S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999).
[CrossRef] [PubMed]

Bourouina, T.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Brenner, M.

Chau, F. S.

Chen, Z.

Chiao, M.

Choe, S.-W.

Choi, W. K.

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

Chou, J. B.

J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012).
[CrossRef]

Chu, K. M.

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

Deutsch, T. F.

S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999).
[CrossRef] [PubMed]

Dickensheets, D. L.

Du, Y.

Elwenspoek, M.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Ergeneman, O.

A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).

Feng, H.

Français, O.

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Groeneveld, A. W.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Guo, S.

Iseki, T.

T. Iseki, M. Okumura, and T. Sugawara, “High speed and wide angle deflection optical MEMS scanner using piezoelectric actuation,” IEEE J. Trans. Elec. Electron. Eng.5(3), 361–368 (2010).
[CrossRef]

Izatt, J. A.

Jeon, D. Y.

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

Jeong, K. H.

Khalil, D.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

Ko, Y. C.

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

Kumar, K.

Lee, D.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

Lee, J. H.

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

Legtenberg, R.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Liu, L.

Mahadevan-Jansen, A.

Mandella, M. J.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

Marty, F.

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Matsuda, T.

Medhat, M.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

Mercier, B.

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Mita, Y.

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Mortada, B.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

Mu, X.

Mukai, D. S.

Ntziachristos, V.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
[CrossRef] [PubMed]

Okumura, M.

T. Iseki, M. Okumura, and T. Sugawara, “High speed and wide angle deflection optical MEMS scanner using piezoelectric actuation,” IEEE J. Trans. Elec. Electron. Eng.5(3), 361–368 (2010).
[CrossRef]

Omran, H.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

Park, H. C.

Park, H. H.

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

Piyawattanametha, W.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

Ra, H.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

Rao, K. D.

Rattner, D. W.

S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999).
[CrossRef] [PubMed]

Ripoll, J.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
[CrossRef] [PubMed]

Riza, N. A.

Rousseau, L.

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Saadany, B.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Sabry, Y.

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

Sabry, Y. M.

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).

Siu, C. P. B.

Smith, S. W.

Solgaard, O.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

Song, C.

Sorg, B. S.

Sugawara, T.

T. Iseki, M. Okumura, and T. Sugawara, “High speed and wide angle deflection optical MEMS scanner using piezoelectric actuation,” IEEE J. Trans. Elec. Electron. Eng.5(3), 361–368 (2010).
[CrossRef]

Sun, J.

Taguchi, Y.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

Takahashi, H.

Tran, P. H.

Tsai, J. M. L.

Urey, H.

A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).

Wang, L.

Wang, Y.

Weissleder, R.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
[CrossRef] [PubMed]

Wu, L.

Wu, M. C.

J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012).
[CrossRef]

Xie, H.

Yalcinkaya, A. D.

A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).

Yaqoob, Z.

Yazdanfar, S.

Yu, H.

Yu, K.

J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012).
[CrossRef]

Zacharakis, G.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
[CrossRef] [PubMed]

Zara, J. M.

Zeng, H.

Zhang, X.

Zhou, G.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron.48(2), 244–251 (2012).
[CrossRef]

IEEE J. Trans. Elec. Electron. Eng. (1)

T. Iseki, M. Okumura, and T. Sugawara, “High speed and wide angle deflection optical MEMS scanner using piezoelectric actuation,” IEEE J. Trans. Elec. Electron. Eng.5(3), 361–368 (2010).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

K. M. Chu, W. K. Choi, Y. C. Ko, J. H. Lee, H. H. Park, and D. Y. Jeon, “Flip-chip bonding of MEMS scanner for laser display using electroplated AuSn solder bump,” IEEE Trans. Adv. Packag.30(1), 27–33 (2007).
[CrossRef]

IEEE Trans. Med. Imaging (1)

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Fluorescent protein tomography scanner for small animal imaging,” IEEE Trans. Med. Imaging24(7), 878–885 (2005).
[CrossRef] [PubMed]

IEEE/ASME J. Microelectromech. Syst. (2)

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, “Two-dimensional MEMS scanner for dual-axes confocal microscopy,” IEEE/ASME J. Microelectromech. Syst.16(4), 969–976 (2007).
[CrossRef]

J. B. Chou, K. Yu, and M. C. Wu, “Electrothermally actuated lens scanner and latching brake for free-space board-to-board optical interconnects,” IEEE/ASME J. Microelectromech. Syst.21(5), 1107–1116 (2012).
[CrossRef]

J. Micro-Nanolith. MEM (1)

Y. Sabry, M. Medhat, B. Saadany, T. Bourouina, and D. Khalil, “Parameter extraction of MEMS comb-drive near-resonance equivalent circuit: physically-based technique for a unique solution,” J. Micro-Nanolith. MEM11, 021205 (2012).

J. Micromech. Microeng. (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Light Sci. Appl. (1)

Y. M. Sabry, B. Saadany, D. Khalil, and T. Bourouina, “Silicon micromirrors with three-dimensional curvature enabling lens-less efficient coupling of free-space light,” Light Sci. Appl.2, e94 (2013).

Microelectron. J. (1)

F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures,” Microelectron. J.36(7), 673–677 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Sens. Actua. A. (1)

A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sens. Actua. A.135, 236–243 (2007).

Surg. Endosc. (1)

S. A. Boppart, T. F. Deutsch, and D. W. Rattner, “Optical imaging technology in minimally invasive surgery,” Surg. Endosc.13(7), 718–722 (1999).
[CrossRef] [PubMed]

Other (13)

M. H. Kiang, O. Solgaard, R. S. Muller, and K. Y. Lau, “Surface-micromachined electrostatic-comb driven scanning micromirrors for barcode scanners,” in Proceedings of the ninth annual international workshop on Micro Electro Mechanical Systems, (IEEE, 1996), pp. 192–197.

W. O. Davis, R. Sprague, and J. Miller, “MEMS-based pico projector display,” in Proceedings of IEEE/LEOS international conference on Optical MEMs and Nanophotonics, (IEEE, 2008), pp. 31–32.
[CrossRef]

S. D. Senturia, Microsystem Design (Kluwer Academic Publishers, 2001).

O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems (Springer, 2008).

Y. Nada, M. Medhat, M. Nagi, F. Marty, B. Saadany, and T. Bourouina, “Mechanical displacement multiplier: 250 μm stable travel range MEMS actuator using frictionless simple compliant structures,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 1161–1164.

M. Medhat, Y. Nada, B. Mortada, and B. Saadany, “Long range travel MEMS actuator,” U.S. patent application 12761621 (2010).

D. A. Khalil and H. Haddara, “Ultra-wide angle MEMS scanner architecture,” U.S. patent 8411340 B2 (2013).

Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, “Wide steering angle microscanner based on curved surface,” in Proceedings of SPIE MOEMS-MEMS (SPIE, 2013), pp. 86160F.
[CrossRef]

Y. Sabry, D. Khalil, B. Saadany, and T. Bourouina, “Aspherical optical surfaces and optical scanners,” U.S. patent application 61676336 (2012).

Y. M. Sabry, T. E. Bourouina, B. A. Saadany, and D. A. M. Khalil, “Integrated monolithic optical bench containing 3-D curved optical elements and methods of its fabrication,” U.S. patent application 20130100424 (2013).

ISO Standard 11146, “Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005).

A. E. Siegman, Lasers University Science Books (Mill Valley, 1986).

P. F. Goldsmith, Quasioptical Systems (Chapman & Hall, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Conventional scanning architecture based on a rotating flat mirror is shown in (a). The presented scheme based on a translating curved mirror is shown in (b). In the presented scheme, wide angle scanning can be easily obtained, the mirror dimensions can be controlled independent of the mechanical components of the system and the source, as well as other micro optical components, can be integrated on chip.

Fig. 2
Fig. 2

A Gaussian beam is incident on a curved reflector with an angle of incidence θinc where the reflector radius of curvature is R. The tangential plane contains the incident as well as the reflected beam Optical Axis (OA) while the sagittal plane is normal to the tangential one and contains the beam OA.

Fig. 3
Fig. 3

The variations of the output beam normalized parameters with the incidence angle. The study is carried out for a mirror focal length to input beam Rayleigh range (fo / zo) ratio of 1, 5 and 10. The variations of the output beam Rayleigh range is shown in (a) while the variation of the output beam waist location is shown in (b). The variations are significant limiting the wide-angle scanning performance.

Fig. 4
Fig. 4

A linear tilted motion is applied on the mirror with respect to the incident beam axis from position a to position b. The tilted motion minimizes the variation in input distance din while the mirror profile is designed thereof to have its effective focal length (f) matching the input distance.

Fig. 5
Fig. 5

Solution of Eq. (9) for different values of m compared to the cylindrical cross sectional profile.

Fig. 6
Fig. 6

Nearly uniform output beam parameters can be obtained using the surface described by Eq. (9) for m = 2 up to 110 degrees optical deflection angle. The study is carried out for fo / zo ratios of 1, 5 and 10. For the different ratios, the same normalized output distance (dout / fo) can be obtained as shown in (b).

Fig. 7
Fig. 7

Overall structure of the microscanner device in (a) and a Scanning Electron Microscope (SEM) image of the fabricated device in (b) with a zoom-in on the comb-drive fingers, attached curved mirror and an optical fiber inserted into the etched groove self-aligned with the mirror. A double-sided push-pull comb-drive is used to have a relatively large displacement while a double-folded spring is used to avoid non-linearity at large displacement.

Fig. 8
Fig. 8

Measured electrostatic actuator equivalent parallel conductance is given in (a) and parallel capacitance in (b) versus frequency. The measured data is depicted in markers while equivalent circuit data fitting is depicted in lines. The resonance frequency is 329 Hz and the quality factor is 22.

Fig. 9
Fig. 9

Microscope image for the comb at rest position is given in (a) and at resonance in (b). The scale etched in the silicon has a pitch of 25 μm. A peak-to-peak displacement slightly larger than 400 μm can be observed.

Fig. 10
Fig. 10

An optical fiber is inserted into the fiber groove of the MEMS scanner working as a source for visible laser in (a). The MEMS scanner is operated at resonance resulting optical scanning window in (b). A window width of 20 cm could be projected on a screen 10 cm away from the scanning MEMS.

Fig. 11
Fig. 11

The intensity profile of the scanned beam (measured in markers and Gaussian fitting in line) at an optical deflection angle of 100 degree is given in (a) versus the transverse direction as shown by the inset. The inset also shows the spot shape of the beam, which tends to be linear. The spot radius of the scanned beam is given in (b) versus the optical deflection angle using acylindrical mirrors with focal length (fo ) of 100, 200 and 400 μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

M=[ A B C D ]=[ 1 0 2 Rcos θ inc 1 ]
f=0.5Rcos θ inc
w out = w in ( C d in +D ) 2 + C 2 z o 2
d out = ( A d in +B )( C d in +D )+AC z o 2 ( C d in +D ) 2 + C 2 z o 2
z R z o = 1 ( 1 d in f ) 2 + z o 2 f 2
d out f = z R z o [ z o 2 f 2 d in f ( 1 d in f ) ]
d in = f o 2 f o [ 1cos( θ inc ) ]
0.5R( θ inc )cos( θ inc )= d in
0.5y'(1+y ' 2 ) y'' = f o x+y/m

Metrics