Abstract

The stimulated Raman scattering signal is often accompanied by unwanted background arising from other pump-probe modalities. We demonstrate an approach to overcome this challenge based on spectral domain modulation, enabled by a compact, cost-effective angle-to-wavelength pulse shaper. The pulse shaper switches between two spectrally narrow windows, which are cut out of a broadband femtosecond pulse and selected for on- and off- Raman resonance excitation, at 2.1 MHz frequency for detection of stimulated Raman scattering signal. Such spectral modulation reduced the unwanted pump-probe signals by up to 20 times and enabled stimulated Raman scattering imaging of molecules in a pigmented environment.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (Taylor & Francis, 2012).
  2. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
    [CrossRef]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  4. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
    [CrossRef]
  5. Y. Ozeki, F. Dake, S. i. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009).
    [CrossRef] [PubMed]
  6. D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011).
    [CrossRef] [PubMed]
  7. B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
    [CrossRef] [PubMed]
  8. M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
    [CrossRef] [PubMed]
  9. B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
    [CrossRef] [PubMed]
  10. M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
    [CrossRef] [PubMed]
  11. K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
    [CrossRef]
  12. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
    [CrossRef] [PubMed]
  13. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
    [CrossRef]
  14. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
    [CrossRef] [PubMed]
  15. S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
    [CrossRef] [PubMed]
  16. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980).
    [CrossRef] [PubMed]
  17. B. F. Levine and C. G. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett.36(4), 245–247 (1980).
    [CrossRef]
  18. M. D. Levenson, W. E. Moerner, and D. E. Horne, “FM spectroscopy detection of stimulated Raman gain,” Opt. Lett.8(2), 108–110 (1983).
    [CrossRef] [PubMed]
  19. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  20. I. R. Piletic, M. C. Fischer, P. Samineni, G. Yurtsever, and W. S. Warren, “Rapid pulse shaping with homodyne detection for measuring nonlinear optical signals,” Opt. Lett.33(13), 1482–1484 (2008).
    [CrossRef] [PubMed]
  21. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.284(15), 3669–3692 (2011).
    [CrossRef]
  22. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  23. S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
    [CrossRef] [PubMed]
  24. B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B112(12), 3653–3661 (2008).
    [CrossRef] [PubMed]
  25. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010).
    [CrossRef] [PubMed]
  26. A. C. W. van Rhijn, S. Postma, J. P. Korterik, J. L. Herek, and H. L. Offerhaus, “Chemically selective imaging by spectral phase shaping for broadband CARS around 3000 cm−1,” J. Opt. Soc. Am. B26(3), 559–563 (2009).
    [CrossRef]
  27. M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
    [CrossRef] [PubMed]
  28. J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
    [CrossRef] [PubMed]
  29. Y. Ozeki, W. Umemura, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses,” Opt. Lett.37(3), 431–433 (2012).
    [CrossRef] [PubMed]
  30. D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
    [CrossRef] [PubMed]
  31. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006).
    [CrossRef] [PubMed]
  32. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
    [CrossRef] [PubMed]
  33. D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping,” IEEE J. Quantum Electron.37(4), 494–504 (2001).
    [CrossRef]
  34. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
    [CrossRef]
  35. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett.34(15), 2258–2260 (2009).
    [CrossRef] [PubMed]
  36. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.49(25), F10–F17 (2010).
    [CrossRef] [PubMed]
  37. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
    [CrossRef] [PubMed]
  38. Y. S. Yoo, D.-H. Lee, and H. Cho, “Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator,” Opt. Lett.32(22), 3254–3256 (2007).
    [CrossRef] [PubMed]
  39. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express17(15), 12532–12539 (2009).
    [CrossRef] [PubMed]

2013 (1)

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

2012 (3)

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Y. Ozeki, W. Umemura, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses,” Opt. Lett.37(3), 431–433 (2012).
[CrossRef] [PubMed]

2011 (5)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
[CrossRef] [PubMed]

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.284(15), 3669–3692 (2011).
[CrossRef]

2010 (5)

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.49(25), F10–F17 (2010).
[CrossRef] [PubMed]

O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (3)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

I. R. Piletic, M. C. Fischer, P. Samineni, G. Yurtsever, and W. S. Warren, “Rapid pulse shaping with homodyne detection for measuring nonlinear optical signals,” Opt. Lett.33(13), 1482–1484 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

2004 (2)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
[CrossRef] [PubMed]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

2001 (1)

D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping,” IEEE J. Quantum Electron.37(4), 494–504 (2001).
[CrossRef]

2000 (3)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

1983 (1)

1980 (2)

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980).
[CrossRef] [PubMed]

B. F. Levine and C. G. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett.36(4), 245–247 (1980).
[CrossRef]

Ackermann, C.

Ben-Amotz, D.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

Berciaud, S.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
[CrossRef] [PubMed]

Berg, L. E.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Bethea, C. G.

B. F. Levine and C. G. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett.36(4), 245–247 (1980).
[CrossRef]

Bjorklund, G. C.

Blab, G. A.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
[CrossRef] [PubMed]

Borri, P.

Carvajal, M. T.

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Caster, A. G.

S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Chen, B. J.

Chen, B.-C.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

Chen, H.

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Cheng, J.-X.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Cho, H.

Chung, C.-Y.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Cognet, L.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
[CrossRef] [PubMed]

Contreras-Rojas, L. R.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
[CrossRef] [PubMed]

Dake, F.

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

Dhollande, C.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

Ding, S.-Y.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Ekvall, K.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

Ely, D. R.

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Evans, C. L.

Fischer, M. C.

Freudiger, C. W.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express17(15), 12532–12539 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, D.

Fukui, K.

Ganikhanov, F.

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Grinvald, E.

Guy, R. H.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
[CrossRef] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Herek, J. L.

Hibara, A.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

Hiki, S.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

Hill, W.

Himmel, M. E.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express17(15), 12532–12539 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Horne, D. E.

Itoh, K.

Jung, Y.

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Kajiyama, S. i.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Katz, O.

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

Kitamori, T.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

Korterik, J. P.

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Langbein, W.

Leaird, D. E.

D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping,” IEEE J. Quantum Electron.37(4), 494–504 (2001).
[CrossRef]

Lee, D.-H.

Leone, S. R.

S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Levenson, M. D.

Levi, M.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Levine, B. F.

B. F. Levine and C. G. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett.36(4), 245–247 (1980).
[CrossRef]

Levitt, J. M.

Lilledahl, M. B.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Lim, R. S.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Lim, S.-H.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Liu, Y.-S.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

Lounis, B.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Matthews, T. E.

Mawatari, K.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

Mialocq, J. C.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

Min, W.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Moerner, W. E.

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Naskrecki, R.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

Nicolet, O.

S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Nishizawa, N.

Offerhaus, H. L.

Oglesbee, R. A.

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Ozeki, Y.

Pegoraro, A. F.

Pezacki, J. P.

Piletic, I. R.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Pommeret, S.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

Postma, S.

Potma, E. O.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Ridsdale, A.

Rocha-Mendoza, I.

Ruvkun, G.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

Saar, B. G.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
[CrossRef] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express17(15), 12532–12539 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

Samineni, P.

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

Silberberg, Y.

O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Slepkov, A. D.

Slipchenko, M. N.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Stolow, A.

Suhalim, J. L.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Sumimura, K.

Sung, J.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

Tokeshi, M.

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

Tromberg, B. J.

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

Umemura, W.

van der Meulen, P.

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

van Rhijn, A. C. W.

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Wang, M. C.

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

Wang, P.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

Warren, W. S.

Watson, P.

Weiner, A. M.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.284(15), 3669–3692 (2011).
[CrossRef]

D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping,” IEEE J. Quantum Electron.37(4), 494–504 (2001).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Wu, W.

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

Xie, X. S.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express17(15), 12532–12539 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

Xu, B.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

Ye, T.

Yoo, Y. S.

Yurtserver, G.

Yurtsever, G.

Zeng, Y.

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

Zhang, D.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Anal. Chem. (2)

S. Hiki, K. Mawatari, A. Hibara, M. Tokeshi, and T. Kitamori, “UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules,” Anal. Chem.78(8), 2859–2863 (2006).
[CrossRef] [PubMed]

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J.-X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem.85(1), 98–106 (2013).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

M. N. Slipchenko, H. Chen, D. R. Ely, Y. Jung, M. T. Carvajal, and J.-X. Cheng, “Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy,” Analyst (Lond.)135(10), 2613–2619 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

B. G. Saar, Y. Zeng, C. W. Freudiger, Y.-S. Liu, M. E. Himmel, X. S. Xie, and S.-Y. Ding, “Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy,” Angew. Chem. Int. Ed. Engl.49(32), 5476–5479 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

B. F. Levine and C. G. Bethea, “Frequency-modulated shot noise limited stimulated Raman gain spectroscopy,” Appl. Phys. Lett.36(4), 245–247 (1980).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Biophys. J. (1)

J. L. Suhalim, C.-Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J.102(8), 1988–1995 (2012).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. E. Leaird and A. M. Weiner, “Femtosecond direct space-to-time pulse shaping,” IEEE J. Quantum Electron.37(4), 494–504 (2001).
[CrossRef]

J Biophotonics (1)

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J Biophotonics5(10), 801–807 (2012).
[CrossRef] [PubMed]

J Phys Chem Lett (1)

D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss,” J Phys Chem Lett2(11), 1248–1253 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

K. Ekvall, P. van der Meulen, C. Dhollande, L. E. Berg, S. Pommeret, R. Naskrecki, and J. C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340–2352 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (3)

S.-H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

B.-C. Chen and S.-H. Lim, “Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B112(12), 3653–3661 (2008).
[CrossRef] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys.39(9A), 5316–5322 (2000).
[CrossRef]

Mol. Pharm. (1)

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm.8(3), 969–975 (2011).
[CrossRef] [PubMed]

Nat. Methods (1)

M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie, “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8(2), 135–138 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011).
[CrossRef] [PubMed]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun.284(15), 3669–3692 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

Y. S. Yoo, D.-H. Lee, and H. Cho, “Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator,” Opt. Lett.32(22), 3254–3256 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

M. D. Levenson, W. E. Moerner, and D. E. Horne, “FM spectroscopy detection of stimulated Raman gain,” Opt. Lett.8(2), 108–110 (1983).
[CrossRef] [PubMed]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980).
[CrossRef] [PubMed]

I. R. Piletic, M. C. Fischer, P. Samineni, G. Yurtsever, and W. S. Warren, “Rapid pulse shaping with homodyne detection for measuring nonlinear optical signals,” Opt. Lett.33(13), 1482–1484 (2008).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett.34(15), 2258–2260 (2009).
[CrossRef] [PubMed]

Y. Ozeki, W. Umemura, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses,” Opt. Lett.37(3), 431–433 (2012).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett.93(25), 257402 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other (1)

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (Taylor & Francis, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic principles of pump-probe modalities and their spectral characteristics. a, Stimulated Raman scattering (SRS) processes involve the energy transfer from the pump beam to the Stokes beam via excitation of molecular vibrational energy levels (ν). By conventional notations the shorter wavelength beam involved in the SRS process is called pump (ωp) and the longer wavelength beam is called Stokes (ωS). b, In cross-phase modulation (XPM) the pump beam (ωp) changes the nonlinear refractive index at the focus through optical Kerr effect, thus affecting the probe beam (ωpr) propagation and frequency. c, Transient absorption (TA) is a pump-probe processes which involves excitation of electronic energy levels. TA may be categorized into excited state absorption, induced fluorescence, and ground state photobleaching processes, with the latter two often indistinguishable. d, Thermal lensing effects are induced by the local heating after absorption of the pump photons, which change the refractive index at the focus, thus affecting the propagation of a probe beam.

Fig. 2
Fig. 2

Schematic of spectrally modulated SRG microscope and angle-to-wavelength pulse shaper. a, Schematic of the spectrally modulated SRG microscope. DM: dichroic mirror. Delay: delay stage. SU: scanning unit. PD: photodiode. b, The AOM is tuned to deflection mode. c, The AOM is tuned to transmission mode. The change of the angle between b and c is converted into spectral change by the grating and slit combination. The assembly, including the AOM, relay optics, grating and the slit, is termed as “an angle-to-wavelength pulse shaper”. The output is collinearly combined with the Stokes beam and sent to a laser-scanning microscope for SRG imaging. Dichroic: dichroic mirror. AOM: acousto-optic modulator.

Fig. 3
Fig. 3

Spectral and temporal output of the spectral modulator and the corresponding microscopic images. a-c, Time domain pulse train of the first-order AOM output, zero-order, and combined output, respectively. Notice that constant component present in the AOM zero-order does not contribute to pump-probe modalities. d-f, Spectral components of the first-order, zero-order and combined beams, respectively. g-i, SRG imaging of DMSO corresponding to intensity modulated first-order, intensity modulated zero-order, and spectral modulation, respectively. j-l, the intensity profile at dash lines in images g, h, and i, respectively. DC: direct current.

Fig. 4
Fig. 4

Comparison of intensity-modulation (IM) and spectral-modulation (SM) SRG imaging of biological samples. First column: Raman spectra, red dash lines indicate the two Raman shifts used by IM-SRG imaging and on-resonance SM-SRG imaging. For off-resonance SM-SRG, the Raman shifts are not shown. Second column: On-resonance IM-SRG imaging. Third column: Off-resonance IM-SRG imaging. Fourth column: On-resonance SM-SRG imaging. Fifth column: Off-resonance SM-SRG imaging. Rows: a-e, Vertically aligned blonde hair in the center, with d-DMSO on the right and air on the left, sandwiched between two cover slips. f-j, Red blood cells. k-o, Protein crystals. The amplitude of the lock-in amplifier was used for all images. Scale bars: 20 µm.

Fig. 5
Fig. 5

SRG imaging of sebaceous gland in skin of a black mouse in IM and SM modes. a, Intensity modulated SRG image, showing an overwhelming signal from the transient absorption of melanin. b, SM-SRG image of the same area, where the sebaceous gland was clearly distinguished. c, Off-resonance IM-SRG image. d, Off-resonance SM-SRG image. Scale bars: 20 µm.

Fig. 6
Fig. 6

Spectrally modulated hyperspectral SRG imaging with a 4f pulse shaper. a, The spontaneous Raman spectrum of DMSO, in which δ is the spectral difference of the spectral modulator output. b, The difference Raman spectrum calculated from a with δ = 70 cm−1. The difference spectrum intensity IDiff(Ω) = IRaman(Ω) - IRaman(Ω-δ), where IRaman is the spontaneous Raman intensity, and Ω the Raman shift. c,d, Two slices from the XY-Ω SM-SRG image series of DMSO-air interface, corresponding to the green and blue arrows in the spectrum e, which was obtained from the pixel intensity in the orange box in c. Hyperspectral SRG imaging of DMSO on a graphene layer was performed in both intensity modulation and spectral modulation schemes. f,g, Intensity modulation hyperspectral SRG images at the arrow position shown in its spectrum in h. i,j, Images of the same region but in spectral modulation scheme. k, Spectral profile of SM-SRG, showing the positive and negative peaks from DMSO. The in-phase (X channel) of lock-in amplifier was used to show the phase shift. Scale bars: 10 µm.

Metrics