Abstract

The polarization filter characters of a gold-coated and liquid-filled photonic crystal fiber are studied using the finite element method. Results show that the resonance strength and wavelengths are different in two polarized directions. Filling liquid of refractive index n=1.33 (purified water) in holes in longitudinal direction can increase the loss of core mode polarized in the y-direction around the resonance peak. The resonance strength is much stronger in y-polarized direction than in x-polarized direction. The resonance strength can achieve 508dB/cm in y-polarized direction at the communication wavelength of 1311nm in one of our structures. Moreover, the full width half maximum is only 20nm. Such a small number makes such photonic crystal fibers promising candidate to filter devices. A liquid filled PCF of the small hole in the fiber core is designed and we find that filling liquid increases the resonance strength peak by thirty eight percent for the y-polarized resonance point.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  2. K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express11(13), 1503–1509 (2003).
    [CrossRef] [PubMed]
  3. Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).
  4. S. M. Kuo, Y. W. Huang, S. M. Yeh, W. H. Cheng, and C. H. Lin, “Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement,” Opt. Express19(19), 18372–18379 (2011).
    [CrossRef] [PubMed]
  5. M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
    [CrossRef] [PubMed]
  6. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
    [CrossRef] [PubMed]
  7. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).
  8. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007).
    [CrossRef] [PubMed]
  9. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett.35(15), 2573–2575 (2010).
    [CrossRef] [PubMed]
  10. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
    [CrossRef]
  11. B. H. Kim, S. H. Lee, A. Lin, C. L. Lee, J. Lee, and W. T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express17(3), 1789–1794 (2009).
    [CrossRef] [PubMed]
  12. C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express15(18), 11207–11212 (2007).
    [CrossRef] [PubMed]
  13. Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors2(1), 37–49 (2012).
    [CrossRef]
  14. M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
    [CrossRef]
  15. C. Zhou, “Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor,” Opt. Lasers Eng.50(11), 1592–1595 (2012).
    [CrossRef]
  16. C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
    [CrossRef]
  17. Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
    [CrossRef]
  18. S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
    [CrossRef]
  19. J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
    [CrossRef]
  20. S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
    [CrossRef]
  21. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express19(4), 3799–3808 (2011).
    [CrossRef] [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, CA, 1989).
  23. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
    [CrossRef]
  24. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
    [CrossRef]

2012

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors2(1), 37–49 (2012).
[CrossRef]

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

C. Zhou, “Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor,” Opt. Lasers Eng.50(11), 1592–1595 (2012).
[CrossRef]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
[CrossRef]

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

2011

2010

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett.35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

2009

2008

Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

2007

2005

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

2003

2000

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Bozolan, A.

Brito Cruz, C. H.

Chen, L.

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

Chen, Y.

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors2(1), 37–49 (2012).
[CrossRef]

Cheng, W. H.

Cordeiro, C. M.

Cox, F. M.

de la Chapelle, M.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

De Matos, C. J.

Dos Santos, E. M.

Du, Y.

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

Fassi Fehri, M.

Feng, R. P.

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

Gauvreau, B.

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Han, W. T.

Hansen, K.

Hassani, A.

Huang, Y. W.

Joly, N.

Kabashin, A.

Kim, B. H.

Koshiba, M.

Kuhlmey, B. T.

Kuo, S. M.

Large, M. C. J.

Lee, C. L.

Lee, H. W.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett.35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Lee, J.

Lee, S. H.

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Li, J. H.

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

Li, S. G.

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

Lin, A.

Lin, C. H.

Liu, D.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
[CrossRef]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Liu, D. M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

Liu, S.

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

Lu, P.

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

Lv, C.

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Ming, H.

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors2(1), 37–49 (2012).
[CrossRef]

Nagasaki, A.

Ong, J. S.

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

Ranka, J. K.

Russell, P. S.

Russell, P. S. J.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Russell, P. St. J.

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

Saitoh, K.

Scharrer, M.

Schmidt, M. A.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett.35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Shum, P.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Skorobogatiy, M. A.

Stentz, A. J.

Tian, M.

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

Tyagi, H. K.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett.35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

Uebel, P.

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Wang, J. Y.

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

Wang, R.

Wang, X. Y.

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

Windeler, R. S.

Xia, L.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
[CrossRef]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Xu, Z. Y.

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Ye, P. D.

Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).

Yeh, S. M.

Yin, G. B.

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

Yu, X.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Zhang, B. F.

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

Zhang, F. D.

Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).

Zhang, M.

Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).

Zhang, S.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

Zhang, X.

Zhang, X. X.

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

Zhang, Y.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
[CrossRef]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Zhang, Z. G.

Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).

Zhou, C.

C. Zhou, “Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor,” Opt. Lasers Eng.50(11), 1592–1595 (2012).
[CrossRef]

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
[CrossRef]

Zhou, H.

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

Zhu, X. P.

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

Adv. Mater. Res.

J. H. Li, J. Y. Wang, B. F. Zhang, Z. Y. Xu, and H. Zhou, “Design of photonic crystal fibers based polarization splitter with hollow ring defects,” Adv. Mater. Res.588–589, 2026–2029 (2012).
[CrossRef]

Appl. Phys. B

Y. Du, S. G. Li, S. Liu, X. P. Zhu, and X. X. Zhang, “Polarization splitting filter characteristics of Au-filled high-birefringence photonic crystal fiber,” Appl. Phys. B109(1), 65–74 (2012).
[CrossRef]

Appl. Phys. Lett.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett.93(11), 111102 (2008).
[CrossRef]

IEEE Photon. J.

S. Zhang, X. Yu, Y. Zhang, P. Shum, Y. Zhang, L. Xia, and D. Liu, “Theoretical study of dual-core photonic crystal fibers with metal wire,” IEEE Photon. J.4(4), 1178–1187 (2012).
[CrossRef]

J. Opt.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Opt. Commun.

C. Zhou, Y. Zhang, L. Xia, and D. Liu, “Photonic crystal fiber sensor based on hybrid mechanisms: Plasmonic and directional resonance coupling,” Opt. Commun.285(9), 2466–2471 (2012).
[CrossRef]

M. Tian, P. Lu, L. Chen, C. Lv, and D. M. Liu, “All-solid D-shaped photonic fiber sensor based on surface plasmon resonance,” Opt. Commun.285(6), 1550–1554 (2012).
[CrossRef]

S. Liu, S. G. Li, G. B. Yin, R. P. Feng, and X. Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber,” Opt. Commun.285(6), 1097–1102 (2012).
[CrossRef]

Opt. Express

K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express11(13), 1503–1509 (2003).
[CrossRef] [PubMed]

C. J. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express15(18), 11207–11212 (2007).
[CrossRef] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
[CrossRef] [PubMed]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express15(24), 16270–16278 (2007).
[CrossRef] [PubMed]

M. A. Schmidt and P. St. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express16(18), 13617–13623 (2008).
[CrossRef] [PubMed]

B. H. Kim, S. H. Lee, A. Lin, C. L. Lee, J. Lee, and W. T. Han, “Large temperature sensitivity of Sagnac loop interferometer based on the birefringent holey fiber filled with metal indium,” Opt. Express17(3), 1789–1794 (2009).
[CrossRef] [PubMed]

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express19(4), 3799–3808 (2011).
[CrossRef] [PubMed]

S. M. Kuo, Y. W. Huang, S. M. Yeh, W. H. Cheng, and C. H. Lin, “Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement,” Opt. Express19(19), 18372–18379 (2011).
[CrossRef] [PubMed]

Opt. Laser Technol.

Z. G. Zhang, F. D. Zhang, M. Zhang, and P. D. Ye, “Gas sensing properties of index-guided PCF with air-core,” Opt. Laser Technol.40(1), 168–174 (2008).

Opt. Lasers Eng.

C. Zhou, “Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor,” Opt. Lasers Eng.50(11), 1592–1595 (2012).
[CrossRef]

Opt. Lett.

Photonic Sensors

Y. Chen and H. Ming, “Review of surface plasmon resonance and localized surface plasmon resonance sensor,” Photonic Sensors2(1), 37–49 (2012).
[CrossRef]

Phys. Rev. B

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B77(3), 033417 (2008).

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71(8), 085416 (2005).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, CA, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-section of the photonic crystal fiber.

Fig. 2
Fig. 2

The dispersion relation of SPP modes for various-order and the fiber core mode in (a) and the loss spectra of core mode in (b).

Fig. 3
Fig. 3

Fundamental mode distribution in x-polarized (a) and y-polarized (b) directions at the wavelength of 1311nm.

Fig. 4
Fig. 4

Variation of the loss follows with the birefringence of PCF. The solid and dash lines are the loss of core guided modes in y-polarized and x-polarized direction respectively.

Fig. 5
Fig. 5

Variation of the loss as the thickness of the gold is increased from 0.03μm to 0.06μm. The solid and dash lines are the loss of core guided modes in y-polarized and x-polarized direction respectively.

Fig. 6
Fig. 6

Variation of the loss as the outside diameter (d2) of gold is increased from1.0μm to 1.4μm. The solid and dash lines are the loss of core guided modes in y-polarized and x-polarized direction respectively.

Fig. 7
Fig. 7

The loss of PCF with a small hole in fiber core

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=8.686× 2π λ Im( n eff )× 10 4 ,

Metrics