Abstract

We demonstrate that filling a hollow-core photonic-bandgap fiber with supercritical xenon creates a medium with a controllable density up to several hundred times that at STP, while working at room temperature. The high compressibility of the supercritical fluid allows rapid tuning of the spectral guidance window by making small changes of gas pressure near the critical point. We discuss potential applications of this system in linear and nonlinear optics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006).
    [CrossRef]
  2. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
    [CrossRef]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  4. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004).
    [CrossRef] [PubMed]
  5. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett.31(16), 2489–2491 (2006).
    [CrossRef] [PubMed]
  6. K. E. Lynch-Klarup, E. Mondloch, M. G. Raymer, F. Benabid, F. Gerome, and D. Arrestier, “Supercritical-xenon-filled photonic crystal fiber as a Raman-free nonlinear optical medium,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FM4I.2 http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2012-FM4I.2
    [CrossRef]
  7. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express12(1), 69–74 (2004).
    [CrossRef] [PubMed]
  8. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express14(7), 3000–3006 (2006).
    [CrossRef] [PubMed]
  9. A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
    [CrossRef] [PubMed]
  10. E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems” in NIST Chemistry Webbook, Nist Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov , (retrieved November 13, 2012).
  11. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express12(8), 1477–1484 (2004).
    [CrossRef] [PubMed]
  12. M. Azhar, G. K. L. Wong, W. Chang, N. Y. Joly, and P. St. J. Russell, “Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF,” Opt. Express21(4), 4405–4410 (2013).
    [CrossRef] [PubMed]
  13. C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
    [CrossRef]
  14. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998).
    [CrossRef] [PubMed]
  15. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
    [CrossRef] [PubMed]
  16. R. F. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett.33(2), 116–118 (2008).
    [CrossRef] [PubMed]
  17. M. A. Weinberger and W. G. Schneider, “On the liquid-vapor coexistence curve of xenon in the region of the critical temperature,” Can. J. Chem.30(5), 422–437 (1952).
    [CrossRef]

2013 (1)

2011 (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

2010 (1)

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

2008 (1)

2006 (3)

2005 (2)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
[CrossRef] [PubMed]

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
[CrossRef] [PubMed]

2004 (3)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004).
[CrossRef] [PubMed]

T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express12(1), 69–74 (2004).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

1998 (1)

1952 (1)

M. A. Weinberger and W. G. Schneider, “On the liquid-vapor coexistence curve of xenon in the region of the critical temperature,” Can. J. Chem.30(5), 422–437 (1952).
[CrossRef]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Andersen, U. L.

Antonopoulos, G.

Azhar, M.

Benabid, F.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express14(7), 3000–3006 (2006).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004).
[CrossRef] [PubMed]

Bird, D.

Bird, D. M.

Birks, T.

Birks, T. A.

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004).
[CrossRef] [PubMed]

G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express12(8), 1477–1484 (2004).
[CrossRef] [PubMed]

Brée, C.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

Chang, W.

Chepel, V.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
[CrossRef] [PubMed]

Corney, J. F.

Corwin, K. L.

Couny, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004).
[CrossRef] [PubMed]

Demircan, A.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

Dong, R. F.

Drummond, P. D.

Faheem, M.

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Hedley, T.

Heersink, J.

Hitachi, A.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
[CrossRef] [PubMed]

Humbert, G.

Joly, N. Y.

Knabe, K.

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Kumar, P.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
[CrossRef] [PubMed]

Leuchs, G.

Li, X.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
[CrossRef] [PubMed]

Lopes, M. I.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
[CrossRef] [PubMed]

Mangan, B. J.

Milam, D.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Naweed, A.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Pottage, J.

Roberts, P.

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

Russell, P.

Russell, P. St. J.

Schneider, W. G.

M. A. Weinberger and W. G. Schneider, “On the liquid-vapor coexistence curve of xenon in the region of the critical temperature,” Can. J. Chem.30(5), 422–437 (1952).
[CrossRef]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
[CrossRef] [PubMed]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Solovov, V. N.

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
[CrossRef] [PubMed]

Steinmeyer, G.

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

Thapa, R.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Voss, P. L.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
[CrossRef] [PubMed]

Weaver, O. L.

Weinberger, M. A.

M. A. Weinberger and W. G. Schneider, “On the liquid-vapor coexistence curve of xenon in the region of the critical temperature,” Can. J. Chem.30(5), 422–437 (1952).
[CrossRef]

Williams, D. P.

Wong, G. K. L.

Appl. Opt. (1)

Can. J. Chem. (1)

M. A. Weinberger and W. G. Schneider, “On the liquid-vapor coexistence curve of xenon in the region of the critical temperature,” Can. J. Chem.30(5), 422–437 (1952).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Brée, A. Demircan, and G. Steinmeyer, “Method for computing the nonlinear refractive index via Keldysh theory,” IEEE J. Quantum Electron.46(4), 433–437 (2010).
[CrossRef]

J. Chem. Phys. (1)

A. Hitachi, V. Chepel, M. I. Lopes, and V. N. Solovov, “New approach to the calculation of the refractive index of liquid and solid xenon,” J. Chem. Phys.123(23), 234508 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt.58(2), 87–124 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett.94(5), 053601 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett.93(12), 123903 (2004).
[CrossRef] [PubMed]

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Other (2)

E. W. Lemmon, M. O. McLinden, and D. G. Friend, “Thermophysical properties of fluid systems” in NIST Chemistry Webbook, Nist Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov , (retrieved November 13, 2012).

K. E. Lynch-Klarup, E. Mondloch, M. G. Raymer, F. Benabid, F. Gerome, and D. Arrestier, “Supercritical-xenon-filled photonic crystal fiber as a Raman-free nonlinear optical medium,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FM4I.2 http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2012-FM4I.2
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

An SEM image of the face of a HC-PBG fiber, similar to those used in this study, showing the central hollow core and surrounding lattice of silica struts and holes.

Fig. 2
Fig. 2

Sketch of phase diagram of Xe, with the critical point highlighted in blue.

Fig. 3
Fig. 3

Density vs. pressure for Xe, taken from NIST data for the equation of state [10], and for the ideal-gas law prediction, at temperature 21 C.

Fig. 4
Fig. 4

(a) Four transmission spectra on a normalized intensity scale from the same fiber under different pressures of Xe, demonstrating the shift of the short-wavelength edge of the guidance window. Note the white light source’s pump laser line at 1064 nm and, that due to loss of sensitivity of the spectrometer, the long-wavelength edge was not measured. (b) The spectrum of the source before being coupled into the fiber, on a different vertical scale.

Fig. 5
Fig. 5

Theoretical predictions and experimental results for the shift in the guidance window short-wavelength edge of a HC-PBG fiber filled with Xe, showing the transition to supercritical fluid. The prediction of the ideal gas law is shown for comparison.

Fig. 6
Fig. 6

Six transmission spectra from a 17 m piece of 1550 nm HC-PBG fiber under different pressures of Xe.

Fig. 7
Fig. 7

An apparatus for compressing gaseous xenon into a supercritical fluid.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν 2 = Λ 2 ( 2π λ ) 2 ( n s 2 n 2 ), w 2 = Λ 2 ( β 2 ( 2π λ ) 2 n 2 ).
λ ¯ GWE = λ GWE n s 2 n ¯ 2 n s 2 n 0 2 .
n 2 1 n 2 +2 =( 2 3 )0.012055( 0.26783 43.741 λ 2 + 0.29481 57.480 λ 2 + 5.0333 112.74 λ 2 )( ρ ρ 0 ),

Metrics