Abstract

Higher resolution demands for semiconductor lithography may be fulfilled by higher numerical aperture (NA) systems. However, NAs more than the photoresist refractive index (~1.7) cause surface confinement of the image. In this paper we describe how evanescent wave coupling to effective gain medium surface states beneath the imaging layer can counter this problem. We experimentally demonstrate this at λ = 405 nm using hafnium oxide on SiO2 to enhance the image depth of a 55-nm line and space pattern (numerical aperture of 1.824) from less than 40 nm to more than 90 nm. We provide a design example at λ = 193 nm, where a layer of sapphire on SiO2 counters image decay by an effective-gain-medium resonance phenomena allowing evanescent interferometric lithography to create high aspect ratio structures at NAs of 1.85 (26-nm resolution) and beyond.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).
  2. E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).
  3. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication. (John Wiley & Sons, 2007).
  4. M. Born and E. Wolf, Principles of Optics. (Cambridge University, 1997).
  5. B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
    [CrossRef]
  6. J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
    [CrossRef]
  7. B. W. Smith and J. Zhou, “Snell or Fresnel - The influence of material index on hyper NA lithography,” Proc. SPIE6520A, 6520 (2007).
    [CrossRef]
  8. B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresists,” Proc. SPIE4691, 11–24 (2002).
    [CrossRef]
  9. J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
    [CrossRef]
  10. P. Xie and B. W. Smith, “Projection lithography below lambda/7 through deep-ultraviolet evanescent optical imaging,” J. Vac. Sci. Technol. B28(6), C6Q12 (2010).
    [CrossRef]
  11. P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography,” J. Micro-Nanolithography MEMS and MOEMS10(3), 033012 (2011).
  12. B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
    [CrossRef]
  13. IBM, A Testbed for 193 nm Interferometric Immersion Lithography. [Online] Available: http://www.almaden.ibm.com/st/chemistry/lithography/immersion/NEMO/ [3 May 2012].
  14. C. H. Chang, The MIT Nanoruler: A Tool for Patterning Nano-Accurate Gratings. [Online] Available: http://nanoweb.mit.edu/Annual%20Reports%202005/sec.10.ms.pdf [3 May 2012].
  15. I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
    [CrossRef]
  16. C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011).
    [CrossRef] [PubMed]
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business, 2007).
  18. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  19. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express15(1), 183–197 (2007).
    [CrossRef] [PubMed]
  20. J. Lagois and B. Fischer, “Experimental Observation of Surface Exciton Polaritons,” Phys. Rev. Lett.36(12), 680–683 (1976).
    [CrossRef]
  21. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991).
    [CrossRef] [PubMed]
  22. F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990).
    [CrossRef]
  23. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007).
    [CrossRef] [PubMed]
  24. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  25. R. J. Blaikie and D. O. S. Melville, “Imaging through planar silver lenses in the optical near field,” J. Opt. A7(2), S176–S183 (2005).
    [CrossRef]
  26. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  27. D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B23(3), 461–467 (2006).
    [CrossRef]
  28. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003).
    [CrossRef]
  29. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  30. P. Mehrotra, “High Aspect Ratio Lithographic Imaging at Ultra-high Numerical Apertures: Evanescent Interferometric Lithography with Resonant Reflector Layers,” PhD thesis, (University of Canterbury, Christchurch, New Zealand, 2012).
  31. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

2013 (1)

I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
[CrossRef]

2011 (2)

C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011).
[CrossRef] [PubMed]

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography,” J. Micro-Nanolithography MEMS and MOEMS10(3), 033012 (2011).

2010 (1)

P. Xie and B. W. Smith, “Projection lithography below lambda/7 through deep-ultraviolet evanescent optical imaging,” J. Vac. Sci. Technol. B28(6), C6Q12 (2010).
[CrossRef]

2007 (4)

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
[CrossRef]

B. W. Smith and J. Zhou, “Snell or Fresnel - The influence of material index on hyper NA lithography,” Proc. SPIE6520A, 6520 (2007).
[CrossRef]

A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Opt. Express15(1), 183–197 (2007).
[CrossRef] [PubMed]

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007).
[CrossRef] [PubMed]

2006 (2)

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography,” J. Opt. Soc. Am. B23(3), 461–467 (2006).
[CrossRef]

2005 (5)

R. J. Blaikie and D. O. S. Melville, “Imaging through planar silver lenses in the optical near field,” J. Opt. A7(2), S176–S183 (2005).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

2004 (1)

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

2003 (1)

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003).
[CrossRef]

2002 (1)

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresists,” Proc. SPIE4691, 11–24 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1991 (1)

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991).
[CrossRef] [PubMed]

1990 (1)

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990).
[CrossRef]

1976 (1)

J. Lagois and B. Fischer, “Experimental Observation of Surface Exciton Polaritons,” Phys. Rev. Lett.36(12), 680–683 (1976).
[CrossRef]

Ahn, S.

E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).

Arnold, M. D.

Beinhoff, M.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Blaikie, R. J.

Bourov, A.

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

Bradberry, G. W.

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991).
[CrossRef] [PubMed]

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990).
[CrossRef]

Burnett, J. H.

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
[CrossRef]

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

Carter, K. R.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Cashmore, J.

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresists,” Proc. SPIE4691, 11–24 (2002).
[CrossRef]

Choi, C.-H.

I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
[CrossRef]

Cropanese, F.

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

Du, K.

I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
[CrossRef]

Estroff, A.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

Fan, A.

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

Fan, Y.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003).
[CrossRef]

Fischer, B.

J. Lagois and B. Fischer, “Experimental Observation of Surface Exciton Polaritons,” Phys. Rev. Lett.36(12), 680–683 (1976).
[CrossRef]

Foulkes, J. E.

Hammond, P.

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

Hawker, C. J.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Holzwarth, C. W.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography,” J. Micro-Nanolithography MEMS and MOEMS10(3), 033012 (2011).

C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011).
[CrossRef] [PubMed]

Jeon, H.

E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).

Jhaveri, S. B.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Kaplan, S. G.

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

Kim, E.

E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).

Lafferty, N.

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

Lafferty, N. V.

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
[CrossRef]

Lagois, J.

J. Lagois and B. Fischer, “Experimental Observation of Surface Exciton Polaritons,” Phys. Rev. Lett.36(12), 680–683 (1976).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, J.

E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).

Lee, K.

E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).

Malkoch, M.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Mansuripur, M.

Mehrotra, P.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography,” J. Micro-Nanolithography MEMS and MOEMS10(3), 033012 (2011).

Melville, D. O. S.

Moloney, J. V.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Qi, K.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Sambles, J. R.

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991).
[CrossRef] [PubMed]

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990).
[CrossRef]

Shorley, E. L.

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

Smith, B. W.

P. Xie and B. W. Smith, “Projection lithography below lambda/7 through deep-ultraviolet evanescent optical imaging,” J. Vac. Sci. Technol. B28(6), C6Q12 (2010).
[CrossRef]

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
[CrossRef]

B. W. Smith and J. Zhou, “Snell or Fresnel - The influence of material index on hyper NA lithography,” Proc. SPIE6520A, 6520 (2007).
[CrossRef]

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresists,” Proc. SPIE4691, 11–24 (2002).
[CrossRef]

Sogah, D. Y.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tompkins, P. J.

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

Wathuthanthri, I.

I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
[CrossRef]

Webb, J. E.

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

Wooley, K. L.

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Xie, P.

P. Xie and B. W. Smith, “Projection lithography below lambda/7 through deep-ultraviolet evanescent optical imaging,” J. Vac. Sci. Technol. B28(6), C6Q12 (2010).
[CrossRef]

Xu, W.

I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
[CrossRef]

Yang, F. Z.

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991).
[CrossRef] [PubMed]

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990).
[CrossRef]

Zakharian, A. R.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003).
[CrossRef]

Zhou, J.

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
[CrossRef]

B. W. Smith and J. Zhou, “Snell or Fresnel - The influence of material index on hyper NA lithography,” Proc. SPIE6520A, 6520 (2007).
[CrossRef]

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

I. Wathuthanthri, K. Du, W. Xu, and C.-H. Choi, “Simple Holographic Patterning for High-Aspect-Ratio Three-Dimensional Nanostructures with Large Coverage Area,” Adv. Funct. Mater.23(5), 608–618 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003).
[CrossRef]

J. Micro-Nanolithography MEMS and MOEMS (1)

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, “Solid-immersion Lloyd's mirror as a testbed for plasmon-enhanced ultrahigh numerical aperture lithography,” J. Micro-Nanolithography MEMS and MOEMS10(3), 033012 (2011).

J. Mod. Opt. (1)

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Experimental-Observation Of Surface Exciton-Polaritons On Vanadium Using Infrared Radiation,” J. Mod. Opt.37(9), 1545–1553 (1990).
[CrossRef]

J. Opt. A (1)

R. J. Blaikie and D. O. S. Melville, “Imaging through planar silver lenses in the optical near field,” J. Opt. A7(2), S176–S183 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

P. Xie and B. W. Smith, “Projection lithography below lambda/7 through deep-ultraviolet evanescent optical imaging,” J. Vac. Sci. Technol. B28(6), C6Q12 (2010).
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (3)

J. Lagois and B. Fischer, “Experimental Observation of Surface Exciton Polaritons,” Phys. Rev. Lett.36(12), 680–683 (1976).
[CrossRef]

F. Z. Yang, G. W. Bradberry, and J. R. Sambles, “Long-Range Surface-Mode Supported by Very Thin Silver Films,” Phys. Rev. Lett.66(15), 2030–2032 (1991).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Polym. Mater. Sci. Eng. (1)

K. Qi, K. L. Wooley, S. B. Jhaveri, D. Y. Sogah, M. Beinhoff, M. Malkoch, K. R. Carter, and C. J. Hawker, “Nano-patterned and layered synthetic-biological materials assembled upon polymer brushes via biotin/streptavidin recognition,” Polym. Mater. Sci. Eng.91, 133–134 (2004).

Proc. SPIE (6)

B. W. Smith, Y. Fan, J. Zhou, N. Lafferty, and A. Estroff, “Evanescent wave imaging in optical lithography,” Proc. SPIE6154, U200–U208 (2006).
[CrossRef]

J. H. Burnett, S. G. Kaplan, E. L. Shorley, P. J. Tompkins, and J. E. Webb, “High-index materials for 193 nm immersion lithography,” Proc. SPIE5754, 611–621 (2005).
[CrossRef]

B. W. Smith and J. Zhou, “Snell or Fresnel - The influence of material index on hyper NA lithography,” Proc. SPIE6520A, 6520 (2007).
[CrossRef]

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresists,” Proc. SPIE4691, 11–24 (2002).
[CrossRef]

J. Zhou, N. V. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE6520, 5204T–5204T (2007).
[CrossRef]

B. W. Smith, A. Bourov, A. Fan, F. Cropanese, and P. Hammond, “Amphibian XIS: An immersion lithography microstepper platform,” Proc. SPIE5754, 751–759 (2005).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (9)

P. Mehrotra, “High Aspect Ratio Lithographic Imaging at Ultra-high Numerical Apertures: Evanescent Interferometric Lithography with Resonant Reflector Layers,” PhD thesis, (University of Canterbury, Christchurch, New Zealand, 2012).

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

IBM, A Testbed for 193 nm Interferometric Immersion Lithography. [Online] Available: http://www.almaden.ibm.com/st/chemistry/lithography/immersion/NEMO/ [3 May 2012].

C. H. Chang, The MIT Nanoruler: A Tool for Patterning Nano-Accurate Gratings. [Online] Available: http://nanoweb.mit.edu/Annual%20Reports%202005/sec.10.ms.pdf [3 May 2012].

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business, 2007).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).

E. Kim, J. Lee, S. Ahn, H. Jeon, and K. Lee, “Cell culture over nanopatterned surface fabricated by holographic lithography and nanoimprint lithography,” 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 725–728 (2008).

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication. (John Wiley & Sons, 2007).

M. Born and E. Wolf, Principles of Optics. (Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic representations of (a) basic interference lithography carried out with air as the ambient medium, (b) inside a prism at a high numerical aperture, and (c) in a prism at an ultra-high numerical aperture (NA), with θ beyond the critical angle at the prism-resist interface. These illustrations are for transverse electric (TE) polarisations, with the electric and magnetic field directions defined in part (a). Electric and magnetic field orientations are exchanged in the transverse magnetic (TM) configuration.

Fig. 2
Fig. 2

Schematic of solid immersion two-beam interference lithography.

Fig. 3
Fig. 3

Schematic diagram showing field formation within resist and motivation to consider evanescent field interaction with an underlying substrate.

Fig. 4
Fig. 4

Evanescent image (TM light) in 82.5-nm thick resist, λ = 193 nm with (a) resist underlayer, fictious metal (ε = –29.8) underlayer for (b) optimal off-resonant enhancement (NA = 1.85), and (c) non-optimal resonant enhancement (NA = 1.79).

Fig. 5
Fig. 5

Attenuated total reflectance (ATR) spectra (using analytical transfer-matrix calculations) for the fictitious metal reflector of Fig. 4(b) and 4(c).

Fig. 6
Fig. 6

Evanescent wave enhancement (a) at a metal-dielectric interface through SPP resonance, and (b) at a pseudo-interface formed by sandwiching a high index dielectric between two low-index dielectrics.

Fig. 7
Fig. 7

TE imaging of 26-nm (half-pitch) evanescent features into (a) semi-infinite lossy resist giving 20-nm image depth, and (b) 82.5 nm thick lossy resist on an effective gain medium made up of 43 nm of Al2O3 (Sapphire) on SiO2, giving an image depth of 82.5 nm.

Fig. 8
Fig. 8

Attenuated total reflectance (ATR) spectra (using analytical transfer-matrix calculations) for the fictitious metal reflector of Fig. 4 (b) and 4(c) with TM light (solid line), and an artifical-gain-medium reflector of Fig. 7 with TE light (dashed line).

Fig. 9
Fig. 9

Optical stacks for imaging at λ = 405 nm and NA = 1.824, including a water-soluble poly vinyl acetate (PVA) layer that is used as a barrier between the index matching liquid and the photoresist. (a) Without an EGM underlayer for conventional EIL, and (b) with an EGM underlayer (characterized by ATR earlier) for high aspect ratio imaging.

Fig. 10
Fig. 10

SEM plan views, at pseudo-dosage of 257 mJ/cm2, NA = 1.824, λ = 405 nm, conventional EIL using SILMIL, resulting pitch ~111 nm (55.5 nm half-pitch)

Fig. 11
Fig. 11

Cross-sectional views, at NA = 1.824, λ = 405 nm, conventional EIL using SILMIL, resulting pitch ~111 nm (55.5 nm half-pitch) at pseudo-dosage (PD) of 257 mJ/cm2, giving 30-40 nm image depths. The (a) and (b) SEM scans are at different positions on the sample.

Fig. 12
Fig. 12

Finitie-element simulation of imaging with the stacks in Fig. 9 for NA = 1.824, λ = 405 nm, into (a) semi-infinite resist, and (b) 105 nm resist with an EGM underlayer.

Fig. 13
Fig. 13

AFM scan demonstrating EIL with SILMIL using the imaging stack of Fig. 9 (b), high aspect ratio (~1.8) structure imaged at a NA of 1.824 at λ = 405 nm with pattern half-pitch ~55.5 nm. The average depth measured using AFM software was 100 nm. (a) a 2 µm by 1 µm AFM scan, and (b) a corresponding 2D-like perspective view to depict the tall standing structures.

Fig. 14
Fig. 14

SEM cross-sectional views showing tall standing structures, at PD of 214 mJ/cm2, NA = 1.824, λ = 405 nm, EIL using SILMIL using the imaging stack of Fig. 9 (b), resulting half-pitch ~55.5 nm, with pattern depth ~96 nm .

Fig. 15
Fig. 15

AFM scans demonstrating resist collapse using the imaging stack of Fig. 9(b), for an exposure at PD = 342 mJ/cm2 at a NA of 1.824 and λ = 405 nm with pattern half-pitch ~55 nm. (a) A 5 µm by 5 µm AFM scan showing some resist collapse, and (b) a large area scan cropped to 5 µm by 2.5 µm demonstrating greater resist collapse, a result of over-dosage/exposure/development.

Fig. 16
Fig. 16

Complex-plane plot showing that Eq. (5) is also satisfied if the substrate ε3 has a positive real part ε 3 and a negative imaginary part ε 3 , depicted by Vector C. Although, this results in an argument (Vector B) that has two possible Roots (to compute the z-wave number kz), namely Root 1 (Vector D) and Root 2 (Vector A); the correct solution is in fact Root 2 (Vector A) as this allows k z,3 to have a positive real part k z,3 and a negative imaginary part k z,3 . This figure indicates the relative positions of the vectors required to achieve the desired solution.

Tables (4)

Tables Icon

Table 1 Substrate properties required for surface-state EIL enhancement, for TM and TE polarized light

Tables Icon

Table 2 Definitions and identities used in this chapter

Tables Icon

Table 3 E-field Fresnel transmission and reflection coefficients at an interface between medium a and b for TM polarization. The transmitted field, Et, and reflected field, Er, are considered in total (no additional subscripts) and by their x or z components (with x or z subscripts respectively).

Tables Icon

Table 4 E-field Fresnel Transmission and Reflection coefficients at an interface between medium a and b for TE polarization. The total field E only has a y component Ey in this case.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R= k 1 λ NA , k 1 0.25.
r 23,TM = ε 3 k z,2 ε 2 k z,3 ε 3 k z,2 + ε 2 k z,3 .
| r 23,TM |= | ε 3 k z,2 ε 2 k z,3 | | ε 3 k z,2 + ε 2 k z,3 | >1.
k z,3 ( ε 3 k z,2 ε 2 ε 3 k z,2 ε 2 ε 3 k z,2 ε 2 ε 3 k z,2 ε 2 )> k z,3 ( ε 3 k z,2 ε 2 + ε 3 k z,2 ε 2 + ε 3 k z,2 ε 2 ε 3 k z,2 ε 2 ) .
ε 3 k z,3 > ε 3 k z,3 .
| r 23,TE |=| k z,2 k z,3 k z,2 + k z,3 |>1.
k z,2 k z,3 + k z,2 k z,3 <0
k z,2 k z,3 <0.

Metrics