Abstract

We report on a novel elastico-mechanoluminescence (EML) phosphor of CaZr(PO4)2:Eu2+ for simultaneous luminescent sensing and imaging to mechanical load by the light-emitting of Eu2+ ions. The EML properties of CaZr(PO4)2:Eu2+ show an intense luminance (above 15 mcd m−2), a low load threshold (below 5 N), a broad measurement range for the dynamic load (up to 2000 N), and an accurate linear relationship of EML intensity against the applied load. The excellent EML characteristics are considered to originate from the piezoelectric crystal structure and the multiple trap levels with appropriate depths. An EML mechanism based on the electrons as the main charge carriers is proposed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
    [CrossRef]
  2. B. P. Chandra, “Mechanoluminescence,” in Luminescence of Solids, edited by D. R. Vij (Plenum Press, 1988), 361.
  3. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
    [CrossRef]
  4. C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
    [CrossRef]
  5. N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
    [CrossRef]
  6. V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
    [CrossRef]
  7. X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
    [CrossRef]
  8. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
    [CrossRef]
  9. S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
    [CrossRef]
  10. J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
    [CrossRef]
  11. J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
    [CrossRef]
  12. C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).
  13. Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
    [CrossRef]
  14. K. Fukuda and K. Fukutani, “Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2,” Powder Diffr.18(4), 296–300 (2003).
    [CrossRef]
  15. R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  16. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Press, 1985)
  17. Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett.84(24), 5016–5018 (2004).
    [CrossRef]
  18. M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin.121(1), 102–108 (2006).
    [CrossRef]
  19. V. Petrykin and M. Kakihana, “Direct synthesis of BaAl2S4:Eu2+ blue emission phosphor by one-step sulfurization of highly homogeneous oxide precursor prepared via a solution-based method,” Chem. Mater.20(16), 5128–5130 (2008).
    [CrossRef]
  20. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
    [CrossRef] [PubMed]
  21. C. N. Xu, in “Encyclopedia of Smart Materials,” edited by M. Schwartz (Wiley, New York, 2002) 1, 190.
  22. K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
    [CrossRef]
  23. J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
    [CrossRef]
  24. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
    [CrossRef]
  25. T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
    [CrossRef]
  26. J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007).
    [CrossRef]
  27. W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).
  28. R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
    [CrossRef]
  29. A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991).
    [CrossRef]
  30. N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
    [CrossRef]
  31. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
    [CrossRef]
  32. B. Henderson, “Defects in Crystalline Solids,” (London: Arnold, 1972), 2.
  33. J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
    [CrossRef]
  34. P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin.111(1–2), 89–104 (2005).
    [CrossRef]
  35. T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
    [CrossRef]
  36. H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
    [CrossRef]
  37. K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
    [CrossRef]
  38. H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
    [CrossRef]
  39. V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013).
    [CrossRef]
  40. K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
    [CrossRef]
  41. J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
    [CrossRef]

2013

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[CrossRef]

V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013).
[CrossRef]

2012

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[CrossRef]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

2011

C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

2010

K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

2008

V. Petrykin and M. Kakihana, “Direct synthesis of BaAl2S4:Eu2+ blue emission phosphor by one-step sulfurization of highly homogeneous oxide precursor prepared via a solution-based method,” Chem. Mater.20(16), 5128–5130 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

2007

J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007).
[CrossRef]

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

2006

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin.121(1), 102–108 (2006).
[CrossRef]

2005

P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin.111(1–2), 89–104 (2005).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

2004

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett.84(24), 5016–5018 (2004).
[CrossRef]

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

2003

T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
[CrossRef]

K. Fukuda and K. Fukutani, “Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2,” Powder Diffr.18(4), 296–300 (2003).
[CrossRef]

1999

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
[CrossRef]

1998

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

1997

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

1991

A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991).
[CrossRef]

1977

J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1962

C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).

1958

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

Akiyama, M.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Baere, I. D.

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Bettinali, C.

C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).

Blasse, G.

A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991).
[CrossRef]

Botterman, J.

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Bu, N.

C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Chakravarty, A.

J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007).
[CrossRef]

Chandra, B. P.

V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013).
[CrossRef]

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[CrossRef]

Chandra, V. K.

V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013).
[CrossRef]

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[CrossRef]

Chen, H. H.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin.111(1–2), 89–104 (2005).
[CrossRef]

Eeckhout, K. V.

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Eeckhout, K. V. D.

K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Fu, Y. B.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Fukuda, K.

K. Fukuda and K. Fukutani, “Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2,” Powder Diffr.18(4), 296–300 (2003).
[CrossRef]

Fukutani, K.

K. Fukuda and K. Fukutani, “Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2,” Powder Diffr.18(4), 296–300 (2003).
[CrossRef]

Grandin, A.

C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).

Hirao, K.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

Hird, J. R.

J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007).
[CrossRef]

Hölsä, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

Hoogenstraaten, W.

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).

Imai, Y.

C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Iwased, H.

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

Jha, P.

V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013).
[CrossRef]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Kakihana, M.

V. Petrykin and M. Kakihana, “Direct synthesis of BaAl2S4:Eu2+ blue emission phosphor by one-step sulfurization of highly homogeneous oxide precursor prepared via a solution-based method,” Chem. Mater.20(16), 5128–5130 (2008).
[CrossRef]

Kamimura, S.

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

Kamimura, T.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Kaneko, F.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Kaneyoshi, M.

M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin.121(1), 102–108 (2006).
[CrossRef]

Kato, K.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Katsumata, T.

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
[CrossRef]

Kattsumata, T.

T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
[CrossRef]

Kawaid, M.

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

Kawakami, T.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Kawasaki, M.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

Kodama, N.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Komuro, S.

T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
[CrossRef]

Korthout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

Li, C. N.

C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Liu, Y.

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett.84(24), 5016–5018 (2004).
[CrossRef]

Matsuzawa, T.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

Meijerink, A.

A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991).
[CrossRef]

Morikawa, T.

T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
[CrossRef]

Niittykoski, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

Nikitenko, S.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Nishikubo, K.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Ohta, M.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Petrykin, V.

V. Petrykin and M. Kakihana, “Direct synthesis of BaAl2S4:Eu2+ blue emission phosphor by one-step sulfurization of highly homogeneous oxide precursor prepared via a solution-based method,” Chem. Mater.20(16), 5128–5130 (2008).
[CrossRef]

Poelman, D.

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Qi, Z. M.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Qiu, J.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

Sakai, R.

T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
[CrossRef]

Schipper, W. J.

A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Shi, C. S.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Shimizugawa, Y.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

Shinbo, K.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Smet, P. F.

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Spano, G.

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

Takahashi, T.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Tanaka, K.

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

Tanii, Y.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Terasaki, N.

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

Terasawa, Y.

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

Tsutai, I.

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

Valigi, M.

C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).

Van den Eeckhout, K.

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Walton, A. J.

J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007).
[CrossRef]

Walton, J.

J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[CrossRef]

Wang, X.

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Wang, X. J.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Watanabe, T.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Xiong, D. B.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Xu, C. N.

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[CrossRef]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett.84(24), 5016–5018 (2004).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

Yamada, H.

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[CrossRef]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Yamaga, M.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

Yamamoto, H.

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

Yao, X.

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

Yuan, J. L.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Zhan, T. Z.

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

Zhang, G. B.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Zhang, H.

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

Zhang, J. C.

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

Zhang, L.

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

Zhang, Z. J.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Zhao, J. T.

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Zheng, X. G.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

Acta Crystallogr. A

R. D. Shannon, “Revised effective ionicradii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Acta Mater.

J. Botterman, K. V. Eeckhout, I. D. Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater.60(15), 5494–5500 (2012).
[CrossRef]

Adv. Mater.

X. Wang, C. N. Xu, H. Yamada, K. Nishikubo, and X. G. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics,” Adv. Mater.17(10), 1254–1258 (2005).
[CrossRef]

Adv. Phys.

J. Walton, “Triboluminescence,” Adv. Phys.26(6), 887–948 (1977).
[CrossRef]

Appl. Phys. Lett.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Appl. Phys. Lett.74(9), 1236–1238 (1999).
[CrossRef]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett.74(17), 2414–2416 (1999).
[CrossRef]

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1, 2, ∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

Y. Liu and C. N. Xu, “Electroluminescent ceramics excited by low electrical field,” Appl. Phys. Lett.84(24), 5016–5018 (2004).
[CrossRef]

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett.75(12), 1715–1717 (1999).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce,Ho,” Appl. Phys. Lett.91(8), 081905 (2007).
[CrossRef]

Catal. Today

N. Terasaki, H. Yamada, and C. N. Xu, “Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source,” Catal. Today201, 203–208 (2013).
[CrossRef]

Chem. Mater.

V. Petrykin and M. Kakihana, “Direct synthesis of BaAl2S4:Eu2+ blue emission phosphor by one-step sulfurization of highly homogeneous oxide precursor prepared via a solution-based method,” Chem. Mater.20(16), 5128–5130 (2008).
[CrossRef]

Classe Sci. Fis. Mat. Nat.

C. Bettinali, A. Grandin, and M. Valigi, ““Calcium zirconium phosphate-preparation and crystallographic characteristics,” Lincei,” Classe Sci. Fis. Mat. Nat.33, 472–476 (1962).

J. Alloy. Comp.

J. C. Zhang, X. Wang, and X. Yao, “Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti,” J. Alloy. Comp.498(2), 152–156 (2010).
[CrossRef]

J. Hölsä, T. Aitasalo, M. Lastusaari, J. Niittykoski, and G. Spano, “Role of defect states in persistent luminescence materials,” J. Alloy. Comp.374(1–2), 56–59 (2004).
[CrossRef]

J. Electrochem. Soc.

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Blue light emission from stress-activated CaYAl3O7:Eu,” J. Electrochem. Soc.155(5), J128–J131 (2008).
[CrossRef]

T. Kattsumata, R. Sakai, S. Komuro, and T. Morikawa, “Thermally stimulated and photostimulated luminescence from long duration phosphorescent SrAl2O4:Eu,Dy crystals,” J. Electrochem. Soc.150(5), H111–H114 (2003).
[CrossRef]

H. Zhang, H. Yamada, N. Terasaki, and C. N. Xu, “Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu,Dy,” J. Electrochem. Soc.155(2), J55–J57 (2008).
[CrossRef]

J. C. Zhang, X. Wang, X. Yao, C. N. Xu, and H. Yamada, “Strong Elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ with self-assembled sandwich architectures,” J. Electrochem. Soc.157(12), G269–G273 (2010).
[CrossRef]

J. Lumin.

M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin.121(1), 102–108 (2006).
[CrossRef]

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin.132(3), 858–869 (2012).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4:Eu2+, Dy3+ crystals,” J. Lumin.85(1–3), 149–154 (1999).
[CrossRef]

P. Dorenbos, “The Eu3+ charge transfer energy and the relation with the band gap of compounds,” J. Lumin.111(1–2), 89–104 (2005).
[CrossRef]

H. Yamamoto and T. Matsuzawa, “Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+,” J. Lumin.72–74, 287–289 (1997).
[CrossRef]

V. K. Chandra, B. P. Chandra, and P. Jha, “Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids,” J. Lumin.138, 267–280 (2013).
[CrossRef]

K. Kato, I. Tsutai, T. Kamimura, F. Kaneko, K. Shinbo, M. Ohta, and T. Kawakami, “Thermoluminescence properties of SrAl2O4:Eu sputtered films with long phosphorescence,” J. Lumin.82(3), 213–220 (1999).
[CrossRef]

J. Phys. Chem. B

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. Solids

J. Qiu, M. Kawasaki, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses,” J. Phys. Chem. Solids59(9), 1521–1525 (1998).
[CrossRef]

J. Phys. D

J. R. Hird, A. Chakravarty, and A. J. Walton, “Triboluminescence from diamond,” J. Phys. D40(5), 1464–1472 (2007).
[CrossRef]

J. Phys. D Appl. Phys.

A. Meijerink, W. J. Schipper, and G. Blasse, “Photostimulated luminescence and thermally stimulated luminescence of Y2SiO5-Ce,Sm,” J. Phys. D Appl. Phys.24(6), 997–1002 (1991).
[CrossRef]

Z. J. Zhang, J. L. Yuan, X. J. Wang, D. B. Xiong, H. H. Chen, J. T. Zhao, Y. B. Fu, Z. M. Qi, G. B. Zhang, and C. S. Shi, “Luminescence properties of CaZr(PO4)2:RE (RE = Eu3+, Tb3+, Tm3+) under x-ray and VUV–UV excitation,” J. Phys. D Appl. Phys.40(7), 1910–1914 (2007).
[CrossRef]

Materials

K. V. D. Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+-doped compounds: a review,” Materials3(4), 2536–2566 (2010).
[CrossRef]

Philips Res. Rep.

W. Hoogenstraaten, “Electron traps in zinc-sulfide phosphors,” Philips Res. Rep.13(6), 515–693 (1958).

Phys. Rev. B

K. Korthout, K. Van den Eeckhout, J. Botterman, S. Nikitenko, D. Poelman, and P. F. Smet, “Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: evidence for valence state changes,” Phys. Rev. B84(8), 085140 (2011).
[CrossRef]

Powder Diffr.

K. Fukuda and K. Fukutani, “Crystal structure of calcium zirconium diorthophosphate, CaZr(PO4)2,” Powder Diffr.18(4), 296–300 (2003).
[CrossRef]

RSC Advances

T. Z. Zhan, C. N. Xu, H. Yamada, Y. Terasawa, L. Zhang, H. Iwased, and M. Kawaid, “Enhancement of afterglow in SrAl2O4:Eu2+ long-lasting phosphor with swift heavy ion irradiation,” RSC Advances2(1), 328–332 (2011).
[CrossRef]

Strain

C. N. Li, C. N. Xu, Y. Imai, and N. Bu, “Xu, Y. Imai, and N. Bu, “Real-time visualisation of the Portevin-Le Chatelier effect with mechanoluminescent-sensing film,” Strain47(6), 483–488 (2011).
[CrossRef]

Other

B. P. Chandra, “Mechanoluminescence,” in Luminescence of Solids, edited by D. R. Vij (Plenum Press, 1988), 361.

J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Press, 1985)

C. N. Xu, in “Encyclopedia of Smart Materials,” edited by M. Schwartz (Wiley, New York, 2002) 1, 190.

B. Henderson, “Defects in Crystalline Solids,” (London: Arnold, 1972), 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Synthesis progress of the CaZr(PO4)2:Eu2+ phosphors.

Fig. 2
Fig. 2

(a) XRD pattern of CaZr(PO4)2:Eu2+ and standard XRD pattern of CaZr(PO4)2. (b) crystal structure of calcium zirconium diorthophosphate.

Fig. 3
Fig. 3

Photoluminescence (PL) excitation (λem = 474 nm) and emission (λex = 236 nm and 300 nm) spectra of CaZr(PO4)2:Eu2+.

Fig. 4
Fig. 4

(a) and (b) Elastico-mechanoluminescence (EML) images at bright and dark environment, respectively. (c) EML spectra of CaZr(PO4)2:Eu2+.

Fig. 5
Fig. 5

Linear dependence of elastico-mechanoluminescence (EML) intensity of CaZr(PO4)2:Eu2+ on the compressive load.

Fig. 6
Fig. 6

Experimental afterglow image and decay curve of CaZr(PO4)2:Eu2+ phosphor.

Fig. 7
Fig. 7

Thermoluminescence (ThL) glow curves of the CaZr(PO4)2:Eu2+ phosphor at different heating rates. (Inset) The fitting curves for ThL spectrum at the heating rate of 90 °C/min.

Fig. 8
Fig. 8

Schematic diagram of elastico-mechanoluminescence (EML) process for CaZr(PO4)2:Eu2+.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E t =kln(β/ T m 2 )/(1/ T m )

Metrics