Abstract

In this investigation, a low cost Si wafer metrology system based on low coherence interferometry using NIR light is proposed and verified. The whole system consists of two low coherence interferometric principles: low coherence scanning interferometry (LCSI) for measuring surface profiles and spectrally-resolved interferometry (SRI) to obtain the nominal optical thickness of the double-sided polished Si wafer. The combination of two techniques can reduce the measurement time and give adequate dimensional information of the Si wafer. The wavelength of the optical source is around 1 μm, for which transmission is non-zero for undoped silicon and can be also detected by a typical CCD camera. Because of the typical CCD camera, the whole system can be constructed inexpensively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Bugg, “Noncontact surface profiling using a novel capacitive technique: scanning capacitance microscopy,” Proc. SPIE1573, 216–224 (1992).
    [CrossRef]
  2. J. D. Garratt, “A new stylus instrument with a wide dynamic range for use in surface metrology,” Precis. Eng.4(3), 145–151 (1982).
    [CrossRef]
  3. M. J. Jansen, H. Haitjema, and P. H. J. Schellekens, “A scanning wafer thickness and flatness interferometer,” Proc. SPIE5252, 334–345 (2004).
    [CrossRef]
  4. M. J. Jansen, P. Schellekens, and H. Haitjema, “Development of a double sided stitching interferometer for wafer characterization,” Annals of CIRP55(1), 555–558 (2006).
    [CrossRef]
  5. T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
    [CrossRef]
  6. Q. Wang, U. Griesmann, and R. Polvani, “Interferometric thickness calibration of 300 mm silicon wafers,” Proc. SPIE 6024, 602426.1–602426.5 (2005).
  7. J. Park, L. Chen, Q. Wang, and U. Griesmann, “Modified Roberts-Langenbeck test for measuring thickness and refractive index variation of silicon wafers,” Opt. Express20(18), 20078–20089 (2012).
    [CrossRef] [PubMed]
  8. P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett.18(17), 1462–1464 (1993).
    [CrossRef] [PubMed]
  9. S.-W. Kim and G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt.38(28), 5968–5973 (1999).
    [CrossRef] [PubMed]
  10. K.-N. Joo and S. –W. Kim, “Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,” Opt. Lett. 32, 647–649 (2007), and its references.
  11. Virginia Semiconductor Inc, Optical Properties of Silicon, 3–6, (1999).
  12. R. A. Falk, “Near IR absorption in heavily doped silicon-an empirical approach,” Proc. of the 26th ISTFA, 121–128 (2000).
  13. P. Pavliček and J. Soubusta, “Measurement of the influence of dispersion on white-light interferometry,” Appl. Opt.43(4), 766–770 (2004).
    [CrossRef] [PubMed]

2012 (1)

2007 (1)

K.-N. Joo and S. –W. Kim, “Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,” Opt. Lett. 32, 647–649 (2007), and its references.

2006 (1)

M. J. Jansen, P. Schellekens, and H. Haitjema, “Development of a double sided stitching interferometer for wafer characterization,” Annals of CIRP55(1), 555–558 (2006).
[CrossRef]

2004 (2)

M. J. Jansen, H. Haitjema, and P. H. J. Schellekens, “A scanning wafer thickness and flatness interferometer,” Proc. SPIE5252, 334–345 (2004).
[CrossRef]

P. Pavliček and J. Soubusta, “Measurement of the influence of dispersion on white-light interferometry,” Appl. Opt.43(4), 766–770 (2004).
[CrossRef] [PubMed]

2003 (1)

T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
[CrossRef]

1999 (1)

1993 (1)

1992 (1)

C. D. Bugg, “Noncontact surface profiling using a novel capacitive technique: scanning capacitance microscopy,” Proc. SPIE1573, 216–224 (1992).
[CrossRef]

1982 (1)

J. D. Garratt, “A new stylus instrument with a wide dynamic range for use in surface metrology,” Precis. Eng.4(3), 145–151 (1982).
[CrossRef]

Bugg, C. D.

C. D. Bugg, “Noncontact surface profiling using a novel capacitive technique: scanning capacitance microscopy,” Proc. SPIE1573, 216–224 (1992).
[CrossRef]

Chen, L.

Davies, A.

T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
[CrossRef]

de Groot, P.

Deck, L.

Evans, C. J.

T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
[CrossRef]

Falk, R. A.

R. A. Falk, “Near IR absorption in heavily doped silicon-an empirical approach,” Proc. of the 26th ISTFA, 121–128 (2000).

Garratt, J. D.

J. D. Garratt, “A new stylus instrument with a wide dynamic range for use in surface metrology,” Precis. Eng.4(3), 145–151 (1982).
[CrossRef]

Griesmann, U.

Haitjema, H.

M. J. Jansen, P. Schellekens, and H. Haitjema, “Development of a double sided stitching interferometer for wafer characterization,” Annals of CIRP55(1), 555–558 (2006).
[CrossRef]

M. J. Jansen, H. Haitjema, and P. H. J. Schellekens, “A scanning wafer thickness and flatness interferometer,” Proc. SPIE5252, 334–345 (2004).
[CrossRef]

Jansen, M. J.

M. J. Jansen, P. Schellekens, and H. Haitjema, “Development of a double sided stitching interferometer for wafer characterization,” Annals of CIRP55(1), 555–558 (2006).
[CrossRef]

M. J. Jansen, H. Haitjema, and P. H. J. Schellekens, “A scanning wafer thickness and flatness interferometer,” Proc. SPIE5252, 334–345 (2004).
[CrossRef]

Joo, K.-N.

K.-N. Joo and S. –W. Kim, “Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,” Opt. Lett. 32, 647–649 (2007), and its references.

Kim, G.-H.

Kim, S. –W.

K.-N. Joo and S. –W. Kim, “Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,” Opt. Lett. 32, 647–649 (2007), and its references.

Kim, S.-W.

Park, J.

Parks, R. E.

T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
[CrossRef]

Pavlicek, P.

Schellekens, P.

M. J. Jansen, P. Schellekens, and H. Haitjema, “Development of a double sided stitching interferometer for wafer characterization,” Annals of CIRP55(1), 555–558 (2006).
[CrossRef]

Schellekens, P. H. J.

M. J. Jansen, H. Haitjema, and P. H. J. Schellekens, “A scanning wafer thickness and flatness interferometer,” Proc. SPIE5252, 334–345 (2004).
[CrossRef]

Schmitz, T. L.

T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
[CrossRef]

Soubusta, J.

Wang, Q.

Annals of CIRP (1)

M. J. Jansen, P. Schellekens, and H. Haitjema, “Development of a double sided stitching interferometer for wafer characterization,” Annals of CIRP55(1), 555–558 (2006).
[CrossRef]

Appl. Opt. (2)

Opt. Eng. (1)

T. L. Schmitz, A. Davies, C. J. Evans, and R. E. Parks, “Silicon wafer thickness variation measurements using the National Institute of Standards and Technology infrared interferometer,” Opt. Eng.42(8), 2281–2290 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Precis. Eng. (1)

J. D. Garratt, “A new stylus instrument with a wide dynamic range for use in surface metrology,” Precis. Eng.4(3), 145–151 (1982).
[CrossRef]

Proc. SPIE (2)

M. J. Jansen, H. Haitjema, and P. H. J. Schellekens, “A scanning wafer thickness and flatness interferometer,” Proc. SPIE5252, 334–345 (2004).
[CrossRef]

C. D. Bugg, “Noncontact surface profiling using a novel capacitive technique: scanning capacitance microscopy,” Proc. SPIE1573, 216–224 (1992).
[CrossRef]

Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser (1)

K.-N. Joo and S. –W. Kim, “Refractive index measurement by spectrally resolved interferometry using a femtosecond pulse laser,” Opt. Lett. 32, 647–649 (2007), and its references.

Other (3)

Virginia Semiconductor Inc, Optical Properties of Silicon, 3–6, (1999).

R. A. Falk, “Near IR absorption in heavily doped silicon-an empirical approach,” Proc. of the 26th ISTFA, 121–128 (2000).

Q. Wang, U. Griesmann, and R. Polvani, “Interferometric thickness calibration of 300 mm silicon wafers,” Proc. SPIE 6024, 602426.1–602426.5 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wavelength dependent transmittance curve of 600 μm thickness Si wafer (blue line) and sensitivity of a typical CCD camera (red line).

Fig. 2
Fig. 2

Optical layout of the combined system with LCSI and SRI for a Si wafer metrology; SLD, super luminescence diode; CM, collimating mirror; BS, beam splitter; MR, reference mirror; IL, imaging lens; FL, focusing lens, OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

Experimental result of LCSI with 0.5 mm thickness Si wafer polished at both sides; the inlets indicate the enlarged correlograms corresponding the front and rear sides.

Fig. 4
Fig. 4

(a) Spectral interferogram of the Si wafer and (b) Fourier transformed result of (a).

Fig. 5
Fig. 5

(a) Photograph of the Si wafer used in the experiment and (b) measurement results of (a) by LCSI.

Fig. 6
Fig. 6

The surface profile of (a) front side, (c) rear side and (e) thickness at 50 nm step size; (b), (d) and (f) are the counterparts of (a), (c) and (e) at 650 nm step size in LCSI.

Fig. 7
Fig. 7

The surface profile of (a) front side and (c) rear side at 50 nm step size; (b) and (d) are the counterparts of (a), (b) at 650 nm step size for free loading Si wafer in LCSI.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ( ν )= 4π c n( ν )νt,
N( ν )t= c 4π ϕ ν ,

Metrics