Abstract

Needle-like and flower-like antimony sulfide nanostructures were synthesized and applied for both rigid and flexible photodetectors. Rigid photodetectors based on both nanostructures have the features of linear photocurrent characteristics, low linear dynamic range and good sensitivity to light intensity. Especially, the rigid Sb2S3 nanoflowers photodetector has high photoresponse characteristics and its response time and decay time were found to be relatively fast as 6 ms and 10 ms respectively. The flexible Sb2S3 nanoflowers photodetector has high flexible, light-weight and adequate bendability with a response time of about 0.09 s and recovery time of 0.27 s. Our results revealed that the rigid and flexible photodetectors based on Sb2S3 nanostructures have great potential in next generation optoelectronic devices.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Single-crystalline ZnTe nanowires for application as high-performance Green/Ultraviolet photodetector

Y. L. Cao, Z. T. Liu, L. M. Chen, Y. B. Tang, L. B. Luo, J. S. Jie, W. J. Zhang, S. T. Lee, and C. S. Lee
Opt. Express 19(7) 6100-6108 (2011)

Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates

Zhe Liu, Hongtao Huang, Bo Liang, Xianfu Wang, Zhuoran Wang, Di Chen, and Guozhen Shen
Opt. Express 20(3) 2982-2991 (2012)

Wavelength-tunable photoconductivity of dye-sensitized TiO2 nanoparticle films

Wenji Zheng, Gaohong He, and Yulin Deng
Opt. Lett. 37(17) 3585-3587 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater. 19(22), 3968–3972 (2007).
    [Crossref]
  2. T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small 2(8-9), 1007–1009 (2006).
    [Crossref] [PubMed]
  3. E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
    [Crossref]
  4. L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
    [Crossref] [PubMed]
  5. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
    [Crossref]
  6. M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
    [Crossref]
  7. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
    [Crossref] [PubMed]
  8. S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
    [Crossref] [PubMed]
  9. B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
    [Crossref]
  10. Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
    [Crossref] [PubMed]
  11. L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
    [Crossref] [PubMed]
  12. Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
    [Crossref] [PubMed]
  13. G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
    [Crossref] [PubMed]
  14. J. N. Lu, M. Hu, Y. Tian, C. F. Guo, C. Wang, S. M. Guo, and Q. Liu, “Fast visible light photoelectric switch based on ultralong single crystalline V₂O₅ nanobelt,” Opt. Express 20(7), 6974–6979 (2012).
    [Crossref] [PubMed]
  15. G. Z. Shen and D. Chen, “One-dimensional nanostructures for photodetectors,” Recent Pat. Nanotechnol. 4(1), 20–31 (2010).
    [Crossref] [PubMed]
  16. C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
    [Crossref] [PubMed]
  17. D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
    [Crossref] [PubMed]
  18. P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
    [Crossref] [PubMed]
  19. M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
    [Crossref] [PubMed]
  20. F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
    [Crossref] [PubMed]
  21. G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
    [Crossref] [PubMed]
  22. X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
    [Crossref]
  23. M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
    [Crossref] [PubMed]
  24. G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
    [Crossref]
  25. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
    [Crossref] [PubMed]
  26. Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
    [Crossref] [PubMed]
  27. G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
    [Crossref]
  28. M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
    [Crossref]
  29. J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
    [Crossref] [PubMed]
  30. J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
    [Crossref] [PubMed]
  31. G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
    [Crossref]
  32. J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
    [Crossref] [PubMed]
  33. J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
    [Crossref] [PubMed]
  34. C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
    [Crossref]
  35. S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
    [Crossref]
  36. P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
    [Crossref] [PubMed]
  37. X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
    [Crossref]
  38. T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett. 12(6), 2705–2709 (2012).
    [Crossref] [PubMed]
  39. A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
    [Crossref]
  40. R. F. Service, “Materials science. Inorganic electronics begin to flex their muscle,” Science 312(5780), 1593–1594 (2006).
    [Crossref] [PubMed]
  41. Y. G. Sun and H. H. Wang, “High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles,” Adv. Mater. 19(19), 2818–2823 (2007).
    [Crossref]

2013 (1)

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

2012 (11)

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett. 12(6), 2705–2709 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

J. N. Lu, M. Hu, Y. Tian, C. F. Guo, C. Wang, S. M. Guo, and Q. Liu, “Fast visible light photoelectric switch based on ultralong single crystalline V₂O₅ nanobelt,” Opt. Express 20(7), 6974–6979 (2012).
[Crossref] [PubMed]

2011 (4)

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

2010 (10)

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

G. Z. Shen and D. Chen, “One-dimensional nanostructures for photodetectors,” Recent Pat. Nanotechnol. 4(1), 20–31 (2010).
[Crossref] [PubMed]

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

2009 (2)

G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[Crossref]

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

2008 (3)

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

2007 (4)

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Y. G. Sun and H. H. Wang, “High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles,” Adv. Mater. 19(19), 2818–2823 (2007).
[Crossref]

D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater. 19(22), 3968–3972 (2007).
[Crossref]

M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[Crossref] [PubMed]

2006 (3)

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small 2(8-9), 1007–1009 (2006).
[Crossref] [PubMed]

R. F. Service, “Materials science. Inorganic electronics begin to flex their muscle,” Science 312(5780), 1593–1594 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
[Crossref] [PubMed]

2003 (2)

G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
[Crossref]

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Ahmad, H.

M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[Crossref] [PubMed]

Alvarez, J.

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

Badmaev, A.

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Bando, Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Bao, N.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Bao, N. Z.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Bello, I.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Burghard, M.

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett. 12(6), 2705–2709 (2012).
[Crossref] [PubMed]

Cai, G. B.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Calle, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Cao, Y.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Cardoso, J. C.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Chang, H. K.

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Chang, J. A.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Chen, B.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Chen, D.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

G. Z. Shen and D. Chen, “One-dimensional nanostructures for photodetectors,” Recent Pat. Nanotechnol. 4(1), 20–31 (2010).
[Crossref] [PubMed]

G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
[Crossref]

Chen, G.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

Chen, G. C.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Chen, H.

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

Chen, P. C.

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Chen, P.-C.

G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[Crossref]

Chen, Q.

Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
[Crossref] [PubMed]

Chen, Y.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Chen, Z.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Chen, Z. H.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Cho, Y. J.

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

Dai, L.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Dalton, L.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Dneg, B.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Donavan, K. C.

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

Dong, W. F.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Dong, Y.

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Dufaux, T.

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett. 12(6), 2705–2709 (2012).
[Crossref] [PubMed]

Ehsan, M. A.

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

Fan, X.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Fang, X. S.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Feng, X. J.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Fu, X.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Gan, L.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Golberg, D.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

Gomez De Arco, L.

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Gong, Y.

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Gratzel, M.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Grimes, C. A.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Guo, C. F.

Guo, L. J.

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Guo, S. M.

Guo, X. F.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Han, H. W.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Harvard, K.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

He, Y.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Heath, J. R.

M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[Crossref] [PubMed]

Hochberg, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Hu, M.

Hu, P. A.

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

Huang, H. T.

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

Hunter, A. D.

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

Im, S. H.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Imura, M.

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

Ishikawa, F. N.

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Jen, A. K. Y.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Jha, S. K.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Jiang, Y.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Jie, J. S.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Jo, M. H.

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

Kang, K.

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

Kern, K.

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett. 12(6), 2705–2709 (2012).
[Crossref] [PubMed]

Kim, C. J.

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

Kim, H. J.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Kleider, J. P.

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

Koide, Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

Koide, Y. S.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Komarneni, S.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Kung, S. C.

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

Lawson, R.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Lee, H. S.

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

Lee, P. S.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

Lee, S. T.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Lee, Y. H.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Li, D.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Li, L.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Li, W.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Liang, B.

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

Liao, M. Y.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

Lin, D. D.

D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater. 19(22), 3968–3972 (2007).
[Crossref]

Liu, B.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Liu, B. D.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Liu, C. P.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Liu, Q.

Liu, S.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Liu, Z.

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

Lu, J. N.

Luo, J.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Ma, Y.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Martinu, L.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Mazhar, M.

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

McAlpine, M. C.

M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[Crossref] [PubMed]

Meng, X. M.

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Monroy, E.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Nazeeruddin, M. K.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Ng, T. W.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Omnès, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Pan, W.

D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater. 19(22), 3968–3972 (2007).
[Crossref]

Park, J.

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Peng, L. M.

Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
[Crossref] [PubMed]

Penner, R. M.

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

Qian, Y. T.

G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
[Crossref]

Qiu, W. Z.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Ran, S. H.

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Rhee, J. H.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Ryu, K.

G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[Crossref]

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Scherer, A.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Seok, S. I.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

Service, R. F.

R. F. Service, “Materials science. Inorganic electronics begin to flex their muscle,” Science 312(5780), 1593–1594 (2006).
[Crossref] [PubMed]

Shang, T. C.

T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small 2(8-9), 1007–1009 (2006).
[Crossref] [PubMed]

Shearn, M.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Shen, G.

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[Crossref]

Shen, G. Z.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

G. Z. Shen and D. Chen, “One-dimensional nanostructures for photodetectors,” Recent Pat. Nanotechnol. 4(1), 20–31 (2010).
[Crossref] [PubMed]

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
[Crossref]

Shen, X. P.

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Shi, Y.

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

Shi, Z.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Song, W. F.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

Sullivan, P.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Sun, J. Q.

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Sun, M.

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Sun, Y. G.

Y. G. Sun and H. H. Wang, “High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles,” Adv. Mater. 19(19), 2818–2823 (2007).
[Crossref]

Tahir, A. A.

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

Tan, P. H.

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

Tang, K. B.

G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
[Crossref]

Tang, Y. B.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Tian, Y.

van der Veer, W. E.

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

Wang, C.

Wang, D. W.

M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[Crossref] [PubMed]

Wang, G.

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Wang, G. X.

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Wang, H.

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Wang, H. E.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Wang, H. H.

Y. G. Sun and H. H. Wang, “High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles,” Adv. Mater. 19(19), 2818–2823 (2007).
[Crossref]

Wang, H. Q.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Wang, K.

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Wang, L. F.

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

Wang, R. H.

Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
[Crossref] [PubMed]

Wang, X.

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

Wang, X. F.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

Wang, Z. L.

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

Wang, Z. R.

Z. Liu, H. T. Huang, B. Liang, X. F. Wang, Z. R. Wang, D. Chen, and G. Z. Shen, “Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates,” Opt. Express 20(3), 2982–2991 (2012).
[Crossref] [PubMed]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Wang, Z. X.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Wei, Z. M.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Wen, Z. Z.

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

Wijayantha, K. G. U.

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

Wu, H.

D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater. 19(22), 3968–3972 (2007).
[Crossref]

Wu, P. C.

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Xiao, K.

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

Xie, Z.

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Xu, A. W.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Xu, J.

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

Xu, W.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Xu, X. J.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Yan, C.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Yan, C. Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

Yang, F.

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small 2(8-9), 1007–1009 (2006).
[Crossref] [PubMed]

Yao, J. N.

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
[Crossref] [PubMed]

Zanoni, M. V.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Zanoni, M. V. B.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Zeller, M.

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

Zhai, T. Y.

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Zhang, J.

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

Zhang, T. K.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Zhang, W. F.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Zhang, W. J.

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

Zhang, W. X.

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

Zhang, X.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Zhang, X. Y.

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Zheng, W.

T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small 2(8-9), 1007–1009 (2006).
[Crossref] [PubMed]

Zhou, C.

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[Crossref]

Zhou, C. W.

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

Zhu, D. B.

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

Zhu, Y. G.

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

ACS Nano (6)

P. C. Chen, G. Z. Shen, Y. Shi, H. Chen, and C. W. Zhou, “Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes,” ACS Nano 4(8), 4403–4411 (2010).
[Crossref] [PubMed]

F. N. Ishikawa, H. K. Chang, K. Ryu, P. C. Chen, A. Badmaev, L. Gomez De Arco, G. Z. Shen, and C. W. Zhou, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS Nano 3(1), 73–79 (2009).
[Crossref] [PubMed]

P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors,” ACS Nano 6(7), 5988–5994 (2012).
[Crossref] [PubMed]

T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, L. Li, B. D. Liu, Y. Koide, Y. Ma, J. N. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Z. R. Wang, H. Wang, B. Liu, W. Z. Qiu, J. Zhang, S. H. Ran, H. T. Huang, J. Xu, H. W. Han, D. Chen, and G. Z. Shen, “Transferable and flexible nanorod-assembled TiO₂ cloths for dye-sensitized solar cells, photodetectors, and photocatalysts,” ACS Nano 5(10), 8412–8419 (2011).
[Crossref] [PubMed]

G. Z. Shen, B. Liang, X. F. Wang, H. T. Huang, D. Chen, and Z. L. Wang, “Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications,” ACS Nano 5(8), 6148–6155 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007).
[Crossref]

X. F. Wang, W. F. Song, B. Liu, G. Chen, D. Chen, C. W. Zhou, and G. Z. Shen, “High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates,” Adv. Funct. Mater. 23(9), 1202–1209 (2013).
[Crossref]

Adv. Mater. (5)

G. Z. Shen, J. Xu, X. F. Wang, H. T. Huang, and D. Chen, “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications,” Adv. Mater. 23(6), 771–775 (2011).
[Crossref] [PubMed]

Y. G. Sun and H. H. Wang, “High-performance, flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles,” Adv. Mater. 19(19), 2818–2823 (2007).
[Crossref]

D. D. Lin, H. Wu, and W. Pan, “Photo-switches and memories assembled by electro-spinning aluminum doped zinc oxide single nanowire,” Adv. Mater. 19(22), 3968–3972 (2007).
[Crossref]

L. Li, P. S. Lee, C. Y. Yan, T. Y. Zhai, X. S. Fang, M. Y. Liao, Y. Koide, Y. Bando, and D. Golberg, “Ultrahigh-performance solar-blind photodetectors based on individual single-crystalline In₂Ge₂O₇ nanobelts,” Adv. Mater. 22(45), 5145–5149 (2010).
[Crossref] [PubMed]

L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Y. S. Koide, H. Q. Wang, Y. Bando, and D. Golberg, “Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors,” Adv. Mater. 22(29), 3161–3165 (2010).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (2)

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Y. Zhang, S. Komarneni, M. V. B. Zanoni, and N. Z. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

J. C. Cardoso, C. A. Grimes, X. J. Feng, X. Zhang, S. Komarneni, M. V. Zanoni, and N. Bao, “Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic-inorganic thin film photovoltaics,” Chem. Commun. (Camb.) 48(22), 2818–2820 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller, and A. D. Hunter, “Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films,” Chem. Mater. 22(17), 5084–5092 (2010).
[Crossref]

Chem. Sci. (1)

S. Liu, Z. M. Wei, Y. Cao, L. Gan, Z. X. Wang, W. Xu, X. F. Guo, and D. B. Zhu, “Ultrasensitive water-processed monolayer photodetectors,” Chem. Sci. 2(4), 796–802 (2011).
[Crossref]

J. Cryst. Growth (1)

G. Z. Shen, D. Chen, K. B. Tang, and Y. T. Qian, “Synthesis of ternary sulfides Cu(Ag)-Bi-S coral-shaped crystals from single-source precursors,” J. Cryst. Growth 257(3–4), 293–296 (2003).
[Crossref]

J. Mater. Chem. (3)

G. Shen, P.-C. Chen, K. Ryu, and C. Zhou, “Devices and chemical sensing applications of metal oxide nanowires,” J. Mater. Chem. 19(7), 828–839 (2009).
[Crossref]

X. F. Wang, Z. Xie, H. T. Huang, Z. Liu, D. Chen, and G. Z. Shen, “Gas sensors, thermistor and photodetector based on ZnS nanowires,” J. Mater. Chem. 22(14), 6845–6850 (2012).
[Crossref]

B. Liu, Z. R. Wang, Y. Dong, Y. G. Zhu, Y. Gong, S. H. Ran, Z. Liu, J. Xu, Z. Xie, D. Chen, and G. Z. Shen, “ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts,” J. Mater. Chem. 22(18), 9379–9384 (2012).
[Crossref]

J. Phys. Chem. B (1)

Y. Yu, R. H. Wang, Q. Chen, and L. M. Peng, “High-quality ultralong Sb2S3 nanoribbons on large scale,” J. Phys. Chem. B 109(49), 23312–23315 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

G. C. Chen, B. Dneg, G. B. Cai, T. K. Zhang, W. F. Dong, W. X. Zhang, and A. W. Xu, “The fractal splitting growth of Sb2S3 and Sb2Se3 hierarchical nanostructures,” J. Phys. Chem. C 112(3), 672–679 (2008).
[Crossref]

M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, and X. Fu, “A new photocatalyst Sb2S3 for degradation of methyl orange under visible light irradiation,” J. Phys. Chem. C 112(46), 18076–18081 (2008).
[Crossref]

Nano Lett. (5)

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, “High-performance nanostructured inorganic-organic heterojunction solar cells,” Nano Lett. 10(7), 2609–2612 (2010).
[Crossref] [PubMed]

B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, and G. Shen, “Hierarchical three-dimensional ZnCo₂O₄ nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries,” Nano Lett. 12(6), 3005–3011 (2012).
[Crossref] [PubMed]

C. J. Kim, H. S. Lee, Y. J. Cho, K. Kang, and M. H. Jo, “Diameter-dependent internal gain in ohmic Ge nanowire photodetectors,” Nano Lett. 10(6), 2043–2048 (2010).
[Crossref] [PubMed]

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett. 12(6), 2705–2709 (2012).
[Crossref] [PubMed]

S. C. Kung, W. E. van der Veer, F. Yang, K. C. Donavan, and R. M. Penner, “20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires,” Nano Lett. 10(4), 1481–1485 (2010).
[Crossref] [PubMed]

Nanoscale (1)

D. Chen, Z. Liu, B. Liang, X. F. Wang, and G. Z. Shen, “Transparent metal oxide nanowire transistors,” Nanoscale 4(10), 3001–3012 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

J. Q. Sun, X. P. Shen, L. J. Guo, G. X. Wang, J. Park, and K. Wang, “Solvothermal synthesis of ternary sulfides of Sb2-xBixS3(x=0.4, 1) with 3D flower-like architectures,” Nanoscale Res. Lett. 5(2), 364–369 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

M. C. McAlpine, H. Ahmad, D. W. Wang, and J. R. Heath, “Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors,” Nat. Mater. 6(5), 379–384 (2007).
[Crossref] [PubMed]

M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater. 5(9), 703–709 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

M. Y. Liao, Y. Koide, J. Alvarez, M. Imura, and J. P. Kleider, “Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors,” Phys. Rev. B 78(4), 045112 (2008).
[Crossref]

Phys. Status Solidi B (1)

C. P. Liu, H. E. Wang, T. W. Ng, Z. H. Chen, W. F. Zhang, C. Yan, Y. B. Tang, I. Bello, L. Martinu, W. J. Zhang, and S. K. Jha, “Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions,” Phys. Status Solidi B 249(3), 627–633 (2012).
[Crossref]

Recent Pat. Nanotechnol. (1)

G. Z. Shen and D. Chen, “One-dimensional nanostructures for photodetectors,” Recent Pat. Nanotechnol. 4(1), 20–31 (2010).
[Crossref] [PubMed]

Science (1)

R. F. Service, “Materials science. Inorganic electronics begin to flex their muscle,” Science 312(5780), 1593–1594 (2006).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Small (1)

T. C. Shang, F. Yang, W. Zheng, and C. Wang, “Fabrication of electrically bistable nanofibers,” Small 2(8-9), 1007–1009 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) XRD patterns and (b) UV-vis absorption spectra of the Sb2S3 nanoneedles and nanoflowers.

Fig. 2
Fig. 2

(a,b) SEM images and (c) TEM image of the Sb2S3 nanoneedles. (d,e) SEM images and (f) TEM image of the Sb2S3 nanoflowers.

Fig. 3
Fig. 3

(a) I-V and (b) I-T curves of the Sb2S3 nanoneedles based rigid photodetector, (c) I-V and (d) I-T curves of the Sb2S3 nanoflowers based rigid photodetector illuminated with light density of 24.5 mW/cm2.

Fig. 4
Fig. 4

(a, b) Enlarged view of a single on/off cycle of the Sb2S3 nanoflowers-based device; (c) Photoresponse of the photodetector at 1 V, 0.5 V, and 0.1 V bias voltages; (d) I-V curves recorded at different light intensity illuminated; (e) Linear fit curves of photocurrent at different light intensity at a bias of 1 V and (f) I-V curves illuminated at different wavelength with an intensity of 2mW/cm2.

Fig. 5
Fig. 5

I-V characteristics of the thermistor based on Sb2S3 nanoflowers at different temperatures

Fig. 6
Fig. 6

(a) Photograph of the flexible photodetector based on Sb2S3 nanoflowers; (b) Typical I-V curves measured in dark, upon visible light with intensity of 133.4 mW/cm2 and after 100 cycles of bending, respectively; (c) Time-related response of the photocurrent under visible light illumination; (d, e) Enlarged view of a single on/off cycle; (f) Photoresponse of the device at 10 V, 5 V, and 3 V bias voltages.

Fig. 7
Fig. 7

(a) Photograph of the flexible photodetector based on Sb2S3 nanoneedles. (b) Current vs time for the flexible device with visible light repeatedly turned on and off. (c) Typical I-V characteristics of the device measured in dark and after 40, 80, 100 cycles of bending. (d) I-T curves of the photodetector bent with different curvatures at a voltage of 20 V upon visible light with intensity of 133.4 mW/cm2 condition. The upper insets show the photos of the four various bending states of the device.

Metrics