Abstract

We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility of high carrier frequency and wide bandwidth RF signals delivery in RoF links including DCF fiber. Error free performance that we obtain for 3 Gbps amplitude shift-keying (ASK) signals enables uncompressed high-definition 1080p video delivery.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco white paper, “Cisco visual networking index: global mobile data traffic forecast update, 2012-2017,” (Cisco, 2012). http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf .
  2. Ericsson white paper, “Traffic and market data report,” (Ericsson, 2011). http://hugin.info/1061/R/1561267/483187.pdf .
  3. Ericsson white paper, “Heterogeneous networks,” (Ericsson, 2012). http://www.ericsson.com/res/docs/whitepapers/WP-Heterogeneous-Networks.pdf .
  4. M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
    [CrossRef]
  5. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, L. Ka-Lun, Y. Yizhu, D. Novak, and R. Waterhouse, “Fiber-Wireless Networks and Subsystem Technologies,” J. Lightwave Technol.28(4), 390–405 (2010).
    [CrossRef]
  6. A. M. Zin, M. S. Bongsu, S. M. Idrus, and N. Zulkifli, “An overview of radio-over-fiber network technology,” in Proceedings of IEEE International Conference on Photonics, (Institute of Electrical and Electronics Engineers, San Francisco, 2010), paper ICP2010–85.
  7. R. Herschel and C. G. Schaeffer, “Architectures for multiband multi gbps radio-over-fiber systems,” in Proceedings of 12th ITG Conference on Photonic Networks (Institute of Electrical and Electronics Engineers, Leipzig, Germany, 2011), paper 24.
  8. Vubiq specification datasheet, “60 GHz receiver waveguide module,” (Vubiq, 2013). http://www.vubiq.com/pdf/Data%20Sheet%20V60RXWG2%20rev1.3.pdf .
  9. WirelessHD white paper, “WirelessHD Specification Version 1.1 Overview,” (WirelessHD, 2010). http://www.wirelesshd.org/pdfs/WirelessHD-Specification-Overview-v1.1May2010.pdf .
  10. Siversima white paper, “MM-wave converter series for high capacity wireless transfer,” (Siversima, 2010). http://www.siversima.com/wp-content/uploads/2011/10/high-capacity-wirelesstransfer_111010.pdf .
  11. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995).
    [CrossRef]
  12. K. Kitayama, “Ultimate performance of optical DSB signal-based millimeter-wave fiber-radio system: effect of laser phase noise,” J. Lightwave Technol.17(10), 1774–1781 (1999).
    [CrossRef]
  13. A. Stohr, K. Kitayama, and T. Kuri, “Fiber-length extension in an optical 60-GHz transmission system using an EA-modulator with negative chirp,” IEEE Photon. Technol. Lett.11(6), 739–741 (1999).
    [CrossRef]
  14. A. Ng'oma, Sh. Po-Tsung, J. George, F. Annunziata, M. Sauer, L. Chun-Ting, J. Wen Jr., Jyehong, and S. Chi, “21 Gbps OFDM wireless signal transmission at 60 GHz using a simple IMDD radio-over-fiber system,” Conference on Optical Fiber Communication, collocated National Fiber Optic Engineers Conference (Optical Society of America, 2010), paper OTuF4.
  15. M. Weiß, “60 GHz photonic millimeter-wave communication systems,” PhD dissertation, University of Duisburg-Essen, 2010.
  16. H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
    [CrossRef]
  17. B. Hraimel, Zh. Xiupu, M. Mohamed, and W. Ke, “Precompensated optical double-sideband subcarrier modulation immune to fiber chromatic-dispersion-induced radio frequency power fading,” J. Opt. Commun. Netw.1(4), 331–342 (2009).
    [CrossRef]
  18. H. Sotobayashi and K. Kitayama, “Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation,” J. Lightwave Technol.17(12), 2488–2497 (1999).
    [CrossRef]
  19. A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
    [CrossRef]
  20. T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
    [CrossRef]
  21. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol.25(11), 3244–3256 (2007).
    [CrossRef]
  22. G. Hilt, “Optical transmission and upconversion of microwave signals in radio-over-fiber telecommunication Systems,” PhD dissertation, L’institut National Polytechnique De Grenoble, (1999).
  23. H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to chromatic Dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
    [CrossRef]
  24. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996).
    [CrossRef]

2013

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

2012

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

2010

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, L. Ka-Lun, Y. Yizhu, D. Novak, and R. Waterhouse, “Fiber-Wireless Networks and Subsystem Technologies,” J. Lightwave Technol.28(4), 390–405 (2010).
[CrossRef]

2009

2007

2000

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

1999

1996

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996).
[CrossRef]

1995

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995).
[CrossRef]

H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to chromatic Dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
[CrossRef]

Bakaul, M.

Beltrán, M.

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Bogris, A.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Cai, J.-X.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Cardakli, M. C.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Chen, L.

Feng, K.-M.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Forchhammer, S.

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

Gamage, P.

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996).
[CrossRef]

Hayee, M. I.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Heidemann, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995).
[CrossRef]

Hofstetter, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995).
[CrossRef]

Hraimel, B.

Jäger, D.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Ka-Lun, L.

Karabetsos, S.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Ke, W.

Kitayama, K.

Kuri, T.

A. Stohr, K. Kitayama, and T. Kuri, “Fiber-length extension in an optical 60-GHz transmission system using an EA-modulator with negative chirp,” IEEE Photon. Technol. Lett.11(6), 739–741 (1999).
[CrossRef]

Lebedev, A.

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

Librán, I.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Lim, C.

Llorente, R.

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Long, H.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Ma, J.

Mikroulis, S.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Mohamed, M.

Möllers, I.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Montero, D.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Morant, M.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996).
[CrossRef]

Nirmalathas, A.

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996).
[CrossRef]

Novak, D.

Pang, X.

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

Parker, M. C.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Pham, T. T.

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

Schmuck, H.

H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to chromatic Dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
[CrossRef]

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995).
[CrossRef]

Sotobayashi, H.

Stohr, A.

A. Stohr, K. Kitayama, and T. Kuri, “Fiber-length extension in an optical 60-GHz transmission system using an EA-modulator with negative chirp,” IEEE Photon. Technol. Lett.11(6), 739–741 (1999).
[CrossRef]

Sun, H.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Tafur Monroy, I.

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

Vázquez, C.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Vegas Olmos, J. J.

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

Walker, S. D.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

Waterhouse, R.

Willner, A. E.

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

Xin, X.

Xiupu, Zh.

Yizhu, Y.

Yu, C.

Yu, J.

Yu, X.

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

Zeng, J.

Electron. Lett.

H. Schmuck, “Comparison of optical millimetre-wave system concepts with regard to chromatic Dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
[CrossRef]

Fiber Integrated Opt.

A. Lebedev, J. J. Vegas Olmos, X. Pang, S. Forchhammer, and I. Tafur Monroy, “Demonstration and comparison study for V- and W-band real-time high-definition video delivery in diverse fiber-wireless infrastructure,” Fiber Integrated Opt.32(2), 93–104 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Stohr, K. Kitayama, and T. Kuri, “Fiber-length extension in an optical 60-GHz transmission system using an EA-modulator with negative chirp,” IEEE Photon. Technol. Lett.11(6), 739–741 (1999).
[CrossRef]

H. Sun, M. C. Cardakli, K.-M. Feng, J.-X. Cai, H. Long, M. I. Hayee, and A. E. Willner, “Tunable RF-powerfading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG,” IEEE Photon. Technol. Lett.12(5), 546–548 (2000).
[CrossRef]

IEEE Trans. Microw. Theory

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory43(9), 2263–2269 (1995).
[CrossRef]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter wave links,” IEEE Trans. Microw. Theory44(10), 1716–1724 (1996).
[CrossRef]

IET Optoelectron.

M. C. Parker, S. D. Walker, R. Llorente, M. Morant, M. Beltrán, I. Möllers, D. Jäger, C. Vázquez, D. Montero, I. Librán, S. Mikroulis, S. Karabetsos, and A. Bogris, “Radio-over-fibre technologies arising from the building the future optical network in Europe (BONE) project,” IET Optoelectron.4(6), 247–259 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Fiber Technol.

T. T. Pham, A. Lebedev, M. Beltrán, X. Yu, R. Llorente, and I. Tafur Monroy, “Combined singlemode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access,” Opt. Fiber Technol.18(4), 226–229 (2012).
[CrossRef]

Other

G. Hilt, “Optical transmission and upconversion of microwave signals in radio-over-fiber telecommunication Systems,” PhD dissertation, L’institut National Polytechnique De Grenoble, (1999).

A. Ng'oma, Sh. Po-Tsung, J. George, F. Annunziata, M. Sauer, L. Chun-Ting, J. Wen Jr., Jyehong, and S. Chi, “21 Gbps OFDM wireless signal transmission at 60 GHz using a simple IMDD radio-over-fiber system,” Conference on Optical Fiber Communication, collocated National Fiber Optic Engineers Conference (Optical Society of America, 2010), paper OTuF4.

M. Weiß, “60 GHz photonic millimeter-wave communication systems,” PhD dissertation, University of Duisburg-Essen, 2010.

Cisco white paper, “Cisco visual networking index: global mobile data traffic forecast update, 2012-2017,” (Cisco, 2012). http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf .

Ericsson white paper, “Traffic and market data report,” (Ericsson, 2011). http://hugin.info/1061/R/1561267/483187.pdf .

Ericsson white paper, “Heterogeneous networks,” (Ericsson, 2012). http://www.ericsson.com/res/docs/whitepapers/WP-Heterogeneous-Networks.pdf .

A. M. Zin, M. S. Bongsu, S. M. Idrus, and N. Zulkifli, “An overview of radio-over-fiber network technology,” in Proceedings of IEEE International Conference on Photonics, (Institute of Electrical and Electronics Engineers, San Francisco, 2010), paper ICP2010–85.

R. Herschel and C. G. Schaeffer, “Architectures for multiband multi gbps radio-over-fiber systems,” in Proceedings of 12th ITG Conference on Photonic Networks (Institute of Electrical and Electronics Engineers, Leipzig, Germany, 2011), paper 24.

Vubiq specification datasheet, “60 GHz receiver waveguide module,” (Vubiq, 2013). http://www.vubiq.com/pdf/Data%20Sheet%20V60RXWG2%20rev1.3.pdf .

WirelessHD white paper, “WirelessHD Specification Version 1.1 Overview,” (WirelessHD, 2010). http://www.wirelesshd.org/pdfs/WirelessHD-Specification-Overview-v1.1May2010.pdf .

Siversima white paper, “MM-wave converter series for high capacity wireless transfer,” (Siversima, 2010). http://www.siversima.com/wp-content/uploads/2011/10/high-capacity-wirelesstransfer_111010.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Network scenario for 60 GHz RoF system. RAU: remote antenna unit, CO: central office, O/E: optical to electrical conversion, RN: remote node, DCF: dispersion compensating fiber, SSMF: standard single mode fiber.

Fig. 2
Fig. 2

Experimental setup of the 60 GHz DSB RoF system. LD: laser diode, PC: polarization controller, MZM: Mach-Zender modulator, EDFA: Erbium doped fiber amplifier, OBPF: optical bandpass filter, DCF: dispersion compensating fiber, VOA: variable optical attenuator, PD: photodiode, LNA: low noise amplifier, PA: power amplifier, BPF: bandpass filter, VEA: variable electrical attenuator, PPG: pulse pattern generator, BERT: bit error rate tester.

Fig. 3
Fig. 3

(a) Experimentally measured electrical spectra of the signal before E/O and after O/E conversion, (b) BER curves as a function of the optical power.

Fig. 4
Fig. 4

Dispersion-induced power fading as a function of (a) fiber length for SSMF and DCF, (b) RF carrier frequency for SSMF.

Fig. 5
Fig. 5

Dispersion induced power fading as a function of frequency and fiber length for SSMF (a) and DCF (b).

Fig. 6
Fig. 6

An example of the algorithm performance for 1, 5 and 10 km of SSMF transmission.

Fig. 7
Fig. 7

(a) Improvement of C/N ratio with a frequency tuning method for SSMF, (b) the required frequency shift to produce the improvement of the C/N ratio for SSMF case.

Fig. 8
Fig. 8

(a) Improvement of C/N ratio with a frequency tuning method for DCF, (b) the required frequency shift to produce the improvement of the C/N ratio for DCF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P el (t) I PD 2 (t) cos 2 [ φ d ( ω m )] cos 2 [ πcDL ( f RF / f c ) 2 ]
Penalt y C/N =10log| X OUT ( f c ) fiber X OUT ( f c ) nofiber |

Metrics