Abstract

A compact scheme is demonstrated for amplification and synthesis of ultrashort pulses by fiber amplifiers. Femtosecond pulses are split in 12 different spectral bands which are amplified separately in the 12 cores of a multicore ytterbium doped fiber. Combining the amplifier outputs together with the intensity and phase management of the spectral bands lead to short pulse synthesis with adjustable pulse shape. The scheme gave an x 92 enhancement in amplified power before the onset of nonlinear effects by comparison with standard stretcher free amplification in a single core fiber.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, Th. Gabler, Ch. Wirth, Th. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  2. S. Zhou, F. W. Wise, and D. G. Ouzounov, “Divided-pulse amplification of ultrashort pulses,” Opt. Lett.32(7), 871–873 (2007).
    [CrossRef] [PubMed]
  3. L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier,” Opt. Lett.37(2), 253–255 (2012).
    [CrossRef] [PubMed]
  4. E. Seise, A. Klenke, J. Limpert, and A. Tünnermann, “Coherent addition of fiber-amplified ultrashort laser pulses,” Opt. Express18(26), 27827–27835 (2010).
    [CrossRef] [PubMed]
  5. A. Klenke, E. Seise, S. Demmler, J. Rothhardt, S. Breitkopf, J. Limpert, and A. Tünnermann, “Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy,” Opt. Express19(24), 24280–24285 (2011).
    [CrossRef] [PubMed]
  6. L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, F. Druon, and P. Georges, “High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining,” Opt. Express20(19), 21627–21634 (2012).
    [CrossRef] [PubMed]
  7. Patent pending applications # WO 2012042141 (A1) FR 2964503 (A1) - Procédé et dispositif d’amplification d’un signal optique
  8. I. P. Christov, “Amplification of femtosecond pulses in a spatially dispersive scheme,” Opt. Lett.17(10), 742–744 (1992).
    [CrossRef] [PubMed]
  9. W.-Z. Chang, T. Zhou, L. A. Siiman, and A. Galvanauskas, “Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers,” Opt. Express21(3), 3897–3910 (2013).
    [CrossRef] [PubMed]
  10. T. Mansuryan, Ph. Rigaud, G. Bouwmans, V. Kermene, Y. Quiquempois, A. Desfarges-Berthelemot, P. Armand, J. Benoist, and A. Barthélémy, “Spatially dispersive scheme for transmission and synthesis of femtosecond pulses through a multicore fiber,” Opt. Express20(22), 24769–24777 (2012).
    [CrossRef] [PubMed]
  11. I. Hartl, A. Marcinkevicius, H.A. McKay, L. Dong, and M.E. Fermann, “Coherent beam combination using multicore leakage channel fibers,” OSA ASSP 2009, paper TuA6.
  12. X.-H. Fang, M.-L. Hu, B.-W. Liu, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010).
    [CrossRef] [PubMed]
  13. A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Mégret, “All-fiber coherent combining of Er-doped amplifiers through refractive index control in Yb-doped fibers,” Opt. Lett.34(22), 3574–3576 (2009).
    [CrossRef] [PubMed]
  14. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
    [CrossRef]
  15. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, “Peak-power limits on fiber amplifiers imposed by self-focusing,” Opt. Lett.31(23), 3423–3425 (2006).
    [CrossRef] [PubMed]

2013

2012

2011

2010

2009

2008

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

2007

2006

1992

Andersen, T. V.

Antipov, O. L.

Armand, P.

Barthélémy, A.

Benoist, J.

Bouwmans, G.

Breitkopf, S.

Chai, L.

Chang, W.-Z.

Christov, I. P.

Daniault, L.

Demmler, S.

Desfarges-Berthelemot, A.

Druon, F.

Eidam, T.

Fang, X.-H.

Farrow, R. L.

Fotiadi, A. A.

Gabler, Th.

Galvanauskas, A.

Georges, P.

Hadley, G. R.

Hanf, S.

Hanna, M.

Hu, M.-L.

Kermene, V.

Klenke, A.

Kliner, D. A. V.

Kong, L. J.

Lefrancois, S.

Limpert, J.

Liu, B.-W.

Mansuryan, T.

Mégret, P.

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Mottay, E.

Ouzounov, D. G.

Papadopoulos, D. N.

Quiquempois, Y.

Rigaud, Ph.

Rothhardt, J.

Schreiber, Th.

Seise, E.

Siiman, L. A.

Smith, A. V.

Tünnermann, A.

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Wang, C.-Y.

Wirth, Ch.

Wise, F. W.

Yang, C. X.

Zakharov, N.

Zaouter, Y.

Zhao, L. M.

Zheltikov, A. M.

Zhou, S.

Zhou, T.

Opt. Commun.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

I. Hartl, A. Marcinkevicius, H.A. McKay, L. Dong, and M.E. Fermann, “Coherent beam combination using multicore leakage channel fibers,” OSA ASSP 2009, paper TuA6.

Patent pending applications # WO 2012042141 (A1) FR 2964503 (A1) - Procédé et dispositif d’amplification d’un signal optique

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ytterbium doped multicore fiber. Cores appear as white spots and silica cladding in grey. The fiber was fabricated by stack and draw technique.

Fig. 2
Fig. 2

Schematic drawing depicting the setup. The pulse from the laser oscillator (OSc) is dispersed by a grating (G). The pulse spectrum is displayed on the deformable mirror (DM) for phase profiling and then imaged on the microlens array (MLA) for coupling in the multicore fiber amplifier (MF). On the fiber opposite side, the exit fields are collimated by a microlens array (MLA) and then combined in a common direction by a spectroscope (lens L + grating G) to form the output beam. Pump radiations are combined with the laser field through the dichroic mirror DC.

Fig. 3
Fig. 3

Experimental spectra (a) and autocorrelation traces (b). (a) The spectrum split in twelve bands fills in the envelope of the initial laser spectrum. (b) The autocorrelation of the initial laser pulse (228 fs duration FWHMI) is compared to that of pulses in an isolated frequency band (~1.8 ps duration FWHMI).

Fig. 4
Fig. 4

Autocorrelation trace of the synthesized pulse at the 12 channel amplifier output before (red line) and after (green line) adjustments of gains and pre-compensation of the spectral phase to get the shortest pulse.

Fig. 5
Fig. 5

(a) Spectrum of the 12 recombined channels when the fiber amplifier was operated just below the threshold for nonlinear spectral broadening. (b) autocorrelation (blue) of the corresponding synthesized pulse after pre-compensation of the spectral phase to get the shortest output pulse. Autocorrelation trace of the oscillator is given for reference (black). Autocorrelation trace of the pulse computed by Fourier transform of the recorded spectrum assuming a constant spectral phase is plot for comparison (open red circle).

Fig. 6
Fig. 6

Recording of the signal from a two-photon photodiode which is proportional to the square of the synthesized pulse peak power. The multicore fiber amplifier was run without servo in an unprotected environment.

Fig. 7
Fig. 7

(a) Autocorrelation trace after spectral shaping and optimization of phases to synthesize twin pulses at the amplifier output. A theoretical trace computed from the recorded spectrum is given for comparison. The corresponding pulse sequence is shown in inset. (b) Combined beam spectrum recorded at the amplifier output when half of the pump diodes of the multicore amplifier were switched off.

Metrics