Abstract

We demonstrate a maskless photochemical etching method that is capable of performing one-step etching of multi-level structures. This method uses a digital projector to focus an image onto the sample and define the etching pattern. By combining digital projection photochemical etching with diffraction phase microscopy, etch heights can be measured in situ in a non-destructive manner. This method is single shot, eliminating the need for expensive gray-scale masks or laser scanning methods. The etch rate is studied as a function of the wavelength and irradiance of the projected light. A lateral etch resolution of 2 μm is demonstrated by etching selected portions of the USAF-1951 target. Micropillars, multi-level plateaus, and an Archimedean spiral are etched, each in a single processing step, to illustrate the unique capabilities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wysocki, J. Heitz, and D. Bauerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett.84(12), 2025–2027 (2004).
    [CrossRef]
  2. Y. Jung, J. Kim, S. Jang, K. H. Baik, Y. G. Seo, and S.-M. Hwang, “Enhanced light extraction of nonpolar a-plane (11-20) GaN light emitting diodes on sapphire substrates by photo-enhanced chemical wet etching,” Opt. Express18(9), 9728–9732 (2010).
    [CrossRef] [PubMed]
  3. T. D. Lowes and D. T. Cassidy, “Photochemical Etching of N-Inp as a Function of Temperature and Illumination,” J. Appl. Phys.68(2), 814–819 (1990).
    [CrossRef]
  4. F. W. Ostermayer and P. A. Kohl, “Photoelectrochemical Etching of P-Gaas,” J. Electrochem. Soc.127, C394–C394 (1980).
  5. M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
    [CrossRef]
  6. P. A. Kohl, “Photoelectrochemical etching of semiconductors,” IBM J. Res. Develop.42(5), 629–638 (1998).
    [CrossRef]
  7. C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett.73(6), 797–799 (1998).
    [CrossRef]
  8. X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
    [CrossRef] [PubMed]
  9. S. Pissadakis, R. Böhme, and K. Zimmer, “Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique,” Opt. Express15(4), 1428–1433 (2007).
    [CrossRef] [PubMed]
  10. M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt.37(32), 7568–7576 (1998).
    [CrossRef] [PubMed]
  11. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
    [CrossRef]
  12. F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express18(19), 20334–20343 (2010).
    [CrossRef] [PubMed]
  13. S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
    [CrossRef] [PubMed]
  14. K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
    [CrossRef]
  15. C. Vass, K. Osvay, and B. Hopp, “Fabrication of 150 nm period grating in fused silica by two-beam interferometric laser induced backside wet etching method,” Opt. Express14(18), 8354–8359 (2006).
    [CrossRef] [PubMed]
  16. J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
    [CrossRef] [PubMed]
  17. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, Biophotonics (McGraw-Hill, New York, 2011).
  18. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  19. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
    [CrossRef]
  20. R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” SPIE8681, 8610G (2013).
  21. R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm defects in large area nano-patterns using optical interferometric microscopy,” submitted (2013).
  22. E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
    [CrossRef]
  23. S. J. Lim, W. Kim, and S. K. Shin, “Surface-Dependent, Ligand-Mediated Photochemical Etching of CdSe Nanoplatelets,” J. Am. Chem. Soc.134(18), 7576–7579 (2012).
    [CrossRef] [PubMed]
  24. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
    [CrossRef]
  25. C. J. Hwang, “Optical Properties of N-Type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
    [CrossRef]
  26. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

2013

R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” SPIE8681, 8610G (2013).

2012

S. J. Lim, W. Kim, and S. K. Shin, “Surface-Dependent, Ligand-Mediated Photochemical Etching of CdSe Nanoplatelets,” J. Am. Chem. Soc.134(18), 7576–7579 (2012).
[CrossRef] [PubMed]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
[CrossRef]

S. Ho, M. Haque, P. R. Herman, and J. S. Aitchison, “Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica,” Opt. Lett.37(10), 1682–1684 (2012).
[CrossRef] [PubMed]

2010

Y. Jung, J. Kim, S. Jang, K. H. Baik, Y. G. Seo, and S.-M. Hwang, “Enhanced light extraction of nonpolar a-plane (11-20) GaN light emitting diodes on sapphire substrates by photo-enhanced chemical wet etching,” Opt. Express18(9), 9728–9732 (2010).
[CrossRef] [PubMed]

F. Chen, H. W. Liu, Q. Yang, X. H. Wang, C. Hou, H. Bian, W. W. Liang, J. H. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express18(19), 20334–20343 (2010).
[CrossRef] [PubMed]

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

2007

2006

2005

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

2004

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

G. Wysocki, J. Heitz, and D. Bauerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett.84(12), 2025–2027 (2004).
[CrossRef]

2002

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

1998

P. A. Kohl, “Photoelectrochemical etching of semiconductors,” IBM J. Res. Develop.42(5), 629–638 (1998).
[CrossRef]

C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett.73(6), 797–799 (1998).
[CrossRef]

M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt.37(32), 7568–7576 (1998).
[CrossRef] [PubMed]

1991

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

1990

T. D. Lowes and D. T. Cassidy, “Photochemical Etching of N-Inp as a Function of Temperature and Illumination,” J. Appl. Phys.68(2), 814–819 (1990).
[CrossRef]

1983

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

1980

F. W. Ostermayer and P. A. Kohl, “Photoelectrochemical Etching of P-Gaas,” J. Electrochem. Soc.127, C394–C394 (1980).

1969

C. J. Hwang, “Optical Properties of N-Type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
[CrossRef]

Adesida, I.

C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett.73(6), 797–799 (1998).
[CrossRef]

Aitchison, J. S.

Arbabi, A.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

Asproudis, I.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Bacharis, C.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Baik, K. H.

Bauerle, D.

G. Wysocki, J. Heitz, and D. Bauerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett.84(12), 2025–2027 (2004).
[CrossRef]

Bian, H.

Bigl, F.

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

Bohme, R.

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

Böhme, R.

Braun, A.

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

Cassidy, D. T.

T. D. Lowes and D. T. Cassidy, “Photochemical Etching of N-Inp as a Function of Temperature and Illumination,” J. Appl. Phys.68(2), 814–819 (1990).
[CrossRef]

Chen, F.

Cheng, Y.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Dasari, R. R.

de Boor, J.

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

Ding, X. M.

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

Edwards, C.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
[CrossRef]

Feld, M. S.

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

Geyer, N.

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

Goddard, L. L.

R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” SPIE8681, 8610G (2013).

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
[CrossRef]

Gösele, U.

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

Gupta, S.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

Haque, M.

Heitz, J.

G. Wysocki, J. Heitz, and D. Bauerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett.84(12), 2025–2027 (2004).
[CrossRef]

Herman, P. R.

Ho, S.

Hopp, B.

Hou, C.

Hou, X.

Hwang, C. J.

C. J. Hwang, “Optical Properties of N-Type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
[CrossRef]

Hwang, S.-M.

Ikeda, T.

Jang, S.

Jung, Y.

Kawaguchi, Y.

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

Kim, J.

Kim, W.

S. J. Lim, W. Kim, and S. K. Shin, “Surface-Dependent, Ligand-Mediated Photochemical Etching of CdSe Nanoplatelets,” J. Am. Chem. Soc.134(18), 7576–7579 (2012).
[CrossRef] [PubMed]

Kohl, P. A.

P. A. Kohl, “Photoelectrochemical etching of semiconductors,” IBM J. Res. Develop.42(5), 629–638 (1998).
[CrossRef]

F. W. Ostermayer and P. A. Kohl, “Photoelectrochemical Etching of P-Gaas,” J. Electrochem. Soc.127, C394–C394 (1980).

Liang, W. W.

Lim, S. J.

S. J. Lim, W. Kim, and S. K. Shin, “Surface-Dependent, Ligand-Mediated Photochemical Etching of CdSe Nanoplatelets,” J. Am. Chem. Soc.134(18), 7576–7579 (2012).
[CrossRef] [PubMed]

Liu, H. W.

Lowes, T. D.

T. D. Lowes and D. T. Cassidy, “Photochemical Etching of N-Inp as a Function of Temperature and Illumination,” J. Appl. Phys.68(2), 814–819 (1990).
[CrossRef]

Makropoulou, M.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Midorikawa, K.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Mourou, G. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

Moutsouris, K.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Narazaki, A.

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

Niino, H.

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

Osgood, R. M.

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Ostermayer, F. W.

F. W. Ostermayer and P. A. Kohl, “Photoelectrochemical Etching of P-Gaas,” J. Electrochem. Soc.127, C394–C394 (1980).

Osvay, K.

Pissadakis, S.

Podlesnik, D. V.

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Popescu, G.

R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” SPIE8681, 8610G (2013).

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
[CrossRef]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
[CrossRef] [PubMed]

Rauschenbach, B.

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

Romano, L. T.

C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett.73(6), 797–799 (1998).
[CrossRef]

Ruberto, M. N.

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Sato, T.

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

Scarmozzino, R.

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Schmidt, V.

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

Seo, Y. G.

Serafetinides, A. A.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Shin, S. K.

S. J. Lim, W. Kim, and S. K. Shin, “Surface-Dependent, Ligand-Mediated Photochemical Etching of CdSe Nanoplatelets,” J. Am. Chem. Soc.134(18), 7576–7579 (2012).
[CrossRef] [PubMed]

Si, J. H.

Spyratou, E.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

Su, H.

Sugioka, K.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Tsoutsi, D.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

Vass, C.

Wang, M. R.

Wang, X. H.

Whitaker, J. F.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

Willner, A. E.

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Wittemann, J. V.

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

Wysocki, G.

G. Wysocki, J. Heitz, and D. Bauerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett.84(12), 2025–2027 (2004).
[CrossRef]

Yang, Q.

Youtsey, C.

C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett.73(6), 797–799 (1998).
[CrossRef]

Zhang, X.

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Zhou, R.

R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” SPIE8681, 8610G (2013).

Zimmer, K.

S. Pissadakis, R. Böhme, and K. Zimmer, “Sub-micron periodic structuring of sapphire by laser induced backside wet etching technique,” Opt. Express15(4), 1428–1433 (2007).
[CrossRef] [PubMed]

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Youtsey, L. T. Romano, and I. Adesida, “Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett.73(6), 797–799 (1998).
[CrossRef]

G. Wysocki, J. Heitz, and D. Bauerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett.84(12), 2025–2027 (2004).
[CrossRef]

Appl. Phys. Rev.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Rev.59, 3276–3278 (1991).

Appl. Phys., A Mater. Sci. Process.

K. Zimmer, R. Bohme, A. Braun, B. Rauschenbach, and F. Bigl, “Excimer laser-induced etching of sub-micron surface relief gratings in fused silica using phase grating projection,” Appl. Phys., A Mater. Sci. Process.74(4), 453–456 (2002).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005).
[CrossRef]

Appl. Surf. Sci.

E. Spyratou, I. Asproudis, D. Tsoutsi, C. Bacharis, K. Moutsouris, M. Makropoulou, and A. A. Serafetinides, “UV laser ablation of intraocular lenses: SEM and AFM microscopy examination of the biomaterial surface,” Appl. Surf. Sci.256(8), 2539–2545 (2010).
[CrossRef]

IBM J. Res. Develop.

P. A. Kohl, “Photoelectrochemical etching of semiconductors,” IBM J. Res. Develop.42(5), 629–638 (1998).
[CrossRef]

J. Am. Chem. Soc.

S. J. Lim, W. Kim, and S. K. Shin, “Surface-Dependent, Ligand-Mediated Photochemical Etching of CdSe Nanoplatelets,” J. Am. Chem. Soc.134(18), 7576–7579 (2012).
[CrossRef] [PubMed]

J. Appl. Phys.

C. J. Hwang, “Optical Properties of N-Type GaAs. I. Determination of hole diffusion length from optical absorption and photoluminescence measurements,” J. Appl. Phys.40(9), 3731–3739 (1969).
[CrossRef]

T. D. Lowes and D. T. Cassidy, “Photochemical Etching of N-Inp as a Function of Temperature and Illumination,” J. Appl. Phys.68(2), 814–819 (1990).
[CrossRef]

J. Electrochem. Soc.

F. W. Ostermayer and P. A. Kohl, “Photoelectrochemical Etching of P-Gaas,” J. Electrochem. Soc.127, C394–C394 (1980).

M. N. Ruberto, X. Zhang, R. Scarmozzino, A. E. Willner, D. V. Podlesnik, and R. M. Osgood, “The Laser-Controlled Micrometer-Scale Photoelectrochemical Etching of Iii-V Semiconductors,” J. Electrochem. Soc.138(4), 1174–1185 (1991).
[CrossRef]

Langmuir

X. M. Ding, Y. Kawaguchi, T. Sato, A. Narazaki, and H. Niino, “Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method,” Langmuir20(22), 9769–9774 (2004).
[CrossRef] [PubMed]

Light Sci Appl

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci Appl1(9), e30 (2012).
[CrossRef]

Nanotechnology

J. de Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology21(9), 095302 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B27(2), 985–1009 (1983).
[CrossRef]

SPIE

R. Zhou, G. Popescu, and L. L. Goddard, “22 nm node wafer inspection using diffraction phase microscopy and image post-processing,” SPIE8681, 8610G (2013).

Other

R. Zhou, C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Detecting 20 nm defects in large area nano-patterns using optical interferometric microscopy,” submitted (2013).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues, Biophotonics (McGraw-Hill, New York, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental epi-DPM setup used for photochemical etching and imaging. The thicker solid lines represent the light path from the projector, which was focused on the sample and aligned using CCD1. The epi-DPM system was used to measure the height of features on the sample using CCD2. The light path for epi-DPM is indicated with the thinner dotted lines.

Fig. 2
Fig. 2

Etch rate test. (a) Pattern focused onto sample plane. Eight squares of 32, 64, 96, 128, 160, 192, 224, and 255 were made of red, blue and green. A 30 second photochemical etch was performed using a solution of 1:1:50 H3PO4:H2O2:H2O. (b) Etched squares corresponding to gray-levels indicated in (a). Etching was done using an LD 10X, 0.2 NA objective and imaging was done using a 5X, 0.13 NA objective via epi-DPM. (c) Absolute etch rates at each gray-level for each color. The background (dark) etch rate was 1.12 nm/s. (d) Etch rates versus photon flux for each color.

Fig. 3
Fig. 3

Resolution Test. (a) Projector pattern (selected portions of the USAF-1951 target) focused onto the sample. (b) Etched sample imaged with 5X, 0.13 NA objective (2.5 μm lateral resolution). (c) Image from lines in series 1 captured using a 20X, NA = 0.5 objective (650 nm lateral resolution). (d) Cross-section of horizontal lines taken along dotted-line in (c). Based on this test, the lateral resolution of etched features using our photochemical etching setup is approximately 2 μm.

Fig. 4
Fig. 4

Test structures. (a) DPM height map of a PC etched micropillar. A mask pattern with grey-levels of 0 and 136 was used for the pillar and background respectively. PC etching was performed for 60 seconds resulting in a mean height of 304.9 nm. (b) Cross-section of pillar in (a) showing the dimensions and edge resolution. (c) DPM height map of stacked plateaus. A projected image with grey-levels of 0, 60, and 78 were used for the mask pattern. Photochemical etching was performed for 33 seconds resulting in mean heights of 0, 50.7, and 101.6 nm. Histogram of image in (c) showing the heights of the three levels. (e) Topographical profile of PC etched Archimedean spiral. (f) DPM height image of a flat, unprocessed n + GaAs wafer. The standard deviation is used to quantify the spatial noise of the epi-DPM imaging system. The standard deviations of each layer in (a) and (c) were also measured. The roughness achieved using this method is comparable to that of standard wet etching.

Metrics