Abstract

Surface enhanced Raman scattering (SERS) was measured on periodic and randomly arranged patterns of Au nano-bricks (rectangular parallelepipeds). Resonant SERS conditions were investigated of a near-IR dye deposited on nanoparticles. Random mixtures of Au nano-bricks with different aspect ratio R showed stronger SERS enhancement as compared to periodic patterns with constant aspect ratio (R varies from 1 to 4). SERS mapping revealed up to ∼ 4 times signal increase at the hot-spots. Experimental observation is verified by numerical modeling and is qualitatively consistent with generic scaling arguments of interaction between plasmonic nanoparticles. The effect of randomization on the polarization selectivity for the transverse and longitudinal modes of nano-bricks is shown.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
    [CrossRef] [PubMed]
  2. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
    [CrossRef] [PubMed]
  3. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
    [CrossRef]
  4. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
    [CrossRef] [PubMed]
  5. T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013).
    [CrossRef]
  6. H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
    [CrossRef] [PubMed]
  7. S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
    [CrossRef]
  8. F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
    [CrossRef]
  9. K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
    [CrossRef]
  10. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999).
    [CrossRef]
  11. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
    [CrossRef]
  12. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
    [CrossRef]
  13. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
    [CrossRef]
  14. W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
    [CrossRef] [PubMed]
  15. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
    [CrossRef] [PubMed]
  16. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
    [CrossRef] [PubMed]
  17. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
    [CrossRef]
  18. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
    [CrossRef] [PubMed]
  19. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999).
    [CrossRef]
  20. M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001).
    [CrossRef] [PubMed]
  21. J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett.94, 22111 (2009).
    [CrossRef]
  22. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003).
    [CrossRef] [PubMed]
  23. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
    [CrossRef] [PubMed]
  24. M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012).
    [CrossRef]
  25. F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
    [CrossRef]
  26. Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012).
    [CrossRef]
  27. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27, 241–250 (1998).
    [CrossRef]
  28. J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C112, 5605–5617 (2008).
    [CrossRef]
  29. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  30. S. Juodkazis, L. Rosa, and Y. Nishijima, “Plasmonic solutions for light harvesting in solar and sensing applications,” in Nanoplasmonics: Advanced Device ApplicationsJ. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.
  31. C. F. Bohren, Absorption and Scattering of Light by Small Particles(Wiley Interscience Publication, 1983).
  32. J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, IIIrd ed., 1998).
  33. For example, consider a one-dimensional intensity distribution I1(x), having constant value 1 for 0 < x< 10, and a second distribution I2(x) having value 0.8 for 0 < x< 8 and 1.8 for 8 < x< 10. While the two distributions have the same average 〈I1〉 = 〈I2〉 = 1, I2(x) is clearly less uniform than I1(x). This is reflected in the greater value of the variance estimator 〈I22〉/〈I2〉2=1.16with respect to 〈I12〉/〈I1〉2=1. In order to maximize its value the distribution should have a high degree of non-uniformity, which can be slightly increased by mixing nano-bricks with high aspect ratio, while it is the greatest (thus high enhancement) for a random distribution. When Ris increased, for the T-mode the non-uniformity is increased and the wavelength decreased, both of which favor an increase in Raman scattering relative to extinction (as the Raman scattering cross-section is proportional to 1/λ4). For the L-mode, both non-uniformity and wavelength increase, thus the two factors compensate each other, reducing the growth of Raman intensity with R.
  34. G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011).
    [CrossRef]
  35. A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, and S. Juodkazis, “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21, 6901–6909 (2013).
    [CrossRef] [PubMed]

2013

T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013).
[CrossRef]

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, and S. Juodkazis, “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21, 6901–6909 (2013).
[CrossRef] [PubMed]

2012

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012).
[CrossRef]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012).
[CrossRef]

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

2011

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011).
[CrossRef]

2010

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

2009

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett.94, 22111 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

2008

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C112, 5605–5617 (2008).
[CrossRef]

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

2007

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

2003

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003).
[CrossRef] [PubMed]

2001

M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001).
[CrossRef] [PubMed]

2000

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

1999

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999).
[CrossRef]

1998

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27, 241–250 (1998).
[CrossRef]

Akiyama, S.

Atkinson, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003).
[CrossRef] [PubMed]

Bergman, S. J.

M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001).
[CrossRef] [PubMed]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C112, 5605–5617 (2008).
[CrossRef]

Bohren, C. F.

C. F. Bohren, Absorption and Scattering of Light by Small Particles(Wiley Interscience Publication, 1983).

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

Bratkovsky, A.

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011).
[CrossRef]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Brian, B.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999).
[CrossRef]

Buividas, R.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27, 241–250 (1998).
[CrossRef]

Cao, M.

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012).
[CrossRef]

Chou, A.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Co, D.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Datsyuk, V.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Davis, T. J.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Dmitriev, A.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Dorfmuller, J.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Eftekhari, F.

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

Esslinger, M.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Etrich, C.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Evans, P.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Forster, R. J.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

Fredericks, P. M.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Gervinskas, G.

Gopchandran, K.

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

Gu, N.

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012).
[CrossRef]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Hendren, W.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Huntington, M.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Itoh, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

Izake, E. L.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Jaatinen, E.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, IIIrd ed., 1998).

Jose, B.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

Juodkazis, S.

A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, and S. Juodkazis, “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21, 6901–6909 (2013).
[CrossRef] [PubMed]

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

S. Juodkazis, L. Rosa, and Y. Nishijima, “Plasmonic solutions for light harvesting in solar and sensing applications,” in Nanoplasmonics: Advanced Device ApplicationsJ. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.

Kabashin, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Kadys, A.

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27, 241–250 (1998).
[CrossRef]

Kandasamy, S.

Keyes, T. E.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

Khunsin, W.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett.94, 22111 (2009).
[CrossRef]

Kim, C.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Kondo, T.

T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Kudrius, T.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Lern, L.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Li, J.-M.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Lin, H.-X.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Liu, B.-J.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Liu, D.-Y.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Liu, J.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C112, 5605–5617 (2008).
[CrossRef]

Lordan, F.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malinauskas, M.

Masuda, H.

T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013).
[CrossRef]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999).
[CrossRef]

Mino, M.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Misawa, H.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

Mizeikis, V.

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

Nair, N.

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

Nampoothiri, K.

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999).
[CrossRef]

Nishijima, Y.

Y. Nishijima and S. Akiyama, “Unusual optical properties of the Au/Ag alloy at the matching mole fraction,” Opt. Mater. Express2, 1226–1235 (2012).
[CrossRef]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

S. Juodkazis, L. Rosa, and Y. Nishijima, “Plasmonic solutions for light harvesting in solar and sensing applications,” in Nanoplasmonics: Advanced Device ApplicationsJ. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.

Nishio, K.

T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Odom, T.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Onishi, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

Pastkovsky, S.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Podolskiy, V.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Pors, A.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

Ravindran, T.

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

Ren, B.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Rice, J. H.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

Rockstuhl, C.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Rosa, L.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20, 11466–11477 (2012).
[CrossRef] [PubMed]

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

S. Juodkazis, L. Rosa, and Y. Nishijima, “Plasmonic solutions for light harvesting in solar and sensing applications,” in Nanoplasmonics: Advanced Device ApplicationsJ. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.

Sarychev, A. K.

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Seniutinas, G.

A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, and S. Juodkazis, “Black silicon: substrate for laser 3D micro/nano-polymerization,” Opt. Express21, 6901–6909 (2013).
[CrossRef] [PubMed]

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999).
[CrossRef]

Shubin, V. A.

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999).
[CrossRef]

Šlekys, G.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Šliupas, R.

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Smitha, S.

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Suh, J.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Sun, G.

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett.94, 22111 (2009).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Takabatake, S.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

Terfort, A.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Tian, Z.-Q.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Ueno, K.

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Vogelgesang, R.

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Wang, M.

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012).
[CrossRef]

Wasielewski, M.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

Wurtz, G.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Xie, Z.-X.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Zayats, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Zhou, W.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Žukauskas, A.

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Appl. Phys. Lett.

F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011).
[CrossRef]

K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011).
[CrossRef]

J. B. Khurgin and G. Sun, “Impact of disorder on surface plasmons in two-dimensional arrays of metal nanoparticles,” Appl. Phys. Lett.94, 22111 (2009).
[CrossRef]

Chem. Soc. Rev.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27, 241–250 (1998).
[CrossRef]

J. Am. Chem. Soc.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999).
[CrossRef]

J. Phys. Chem. C

K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to the dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007).
[CrossRef]

T. Kondo, H. Masuda, and K. Nishio, “SERS in ordered array of geometrically controlled nanodots obtained using anodic porous alumina,” J. Phys. Chem. C117, 2531–2534 (2013).
[CrossRef]

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C112, 5605–5617 (2008).
[CrossRef]

Nano Lett.

J. Suh, C. Kim, W. Zhou, M. Huntington, D. Co, M. Wasielewski, and T. Odom, “Plasmonic bowtie nanolaser arrays,” Nano Lett.12, 5769–5774 (2012).
[CrossRef] [PubMed]

W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and L. Lern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011).
[CrossRef] [PubMed]

Nanoscale

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale4, 7419–7424 (2012).
[CrossRef] [PubMed]

Nanotechnology

R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology22, 055304 (2011).
[CrossRef]

Nat. Mater.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8, 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008).
[CrossRef]

Nature

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460, 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Phys. Chem. Chem. Phys.

H.-X. Lin, J.-M. Li, B.-J. Liu, D.-Y. Liu, J. Liu, A. Terfort, Z.-X. Xie, Z.-Q. Tian, and B. Ren, “Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys.15, 4130–4135 (2013).
[CrossRef] [PubMed]

Phys. Rev. B

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B60, 16389–16408 (1999).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

G. Sun, J. B. Khurgin, and A. Bratkovsky, “Coupled-mode theory of field enhancement in complex metal nanostructures,” Phys. Rev. B84, 045415 (2011).
[CrossRef]

F. Eftekhari and T. J. Davis, “Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances,” Phys. Rev. B86, 075428 (2012).
[CrossRef]

Phys. Rev. Lett.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90, 027402 (2003).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and S. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?,” Phys. Rev. Lett.87, 167401 (2001).
[CrossRef] [PubMed]

Plasmonics

S. Smitha, K. Gopchandran, N. Nair, K. Nampoothiri, and T. Ravindran, “SERS and antibacterial active green synthesized gold nanoparticles,” Plasmonics7, 515–524 (2012).
[CrossRef]

M. Cao, M. Wang, and N. Gu, “Plasmon singularities from metal nanoparticles in active media: Influence of particle shape on the gain threshold,” Plasmonics7, 347–351 (2012).
[CrossRef]

Rev. Mod. Phys.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Science

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science333, 1720–1723 (2011).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

S. Juodkazis, L. Rosa, and Y. Nishijima, “Plasmonic solutions for light harvesting in solar and sensing applications,” in Nanoplasmonics: Advanced Device ApplicationsJ. W. M. Chon and K. Iniewski, eds., (CRC Press, 2013), Chap. 3.

C. F. Bohren, Absorption and Scattering of Light by Small Particles(Wiley Interscience Publication, 1983).

J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, IIIrd ed., 1998).

For example, consider a one-dimensional intensity distribution I1(x), having constant value 1 for 0 < x< 10, and a second distribution I2(x) having value 0.8 for 0 < x< 8 and 1.8 for 8 < x< 10. While the two distributions have the same average 〈I1〉 = 〈I2〉 = 1, I2(x) is clearly less uniform than I1(x). This is reflected in the greater value of the variance estimator 〈I22〉/〈I2〉2=1.16with respect to 〈I12〉/〈I1〉2=1. In order to maximize its value the distribution should have a high degree of non-uniformity, which can be slightly increased by mixing nano-bricks with high aspect ratio, while it is the greatest (thus high enhancement) for a random distribution. When Ris increased, for the T-mode the non-uniformity is increased and the wavelength decreased, both of which favor an increase in Raman scattering relative to extinction (as the Raman scattering cross-section is proportional to 1/λ4). For the L-mode, both non-uniformity and wavelength increase, thus the two factors compensate each other, reducing the growth of Raman intensity with R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM images of periodic arrays of nano-bricks of different aspect ratio R: (a) constant R = 1 and (b) mixture of R = 1 to 4. Randomly arranged nanobrick arrays with (c) constant R = 1 and (d) mixture of R from 1 to 4. Randomization degree Ran = 6 corresponds to 6 random-walk steps of 100 nm each, and circles mark closely-clustered nano-bricks, where the strongest light enhancement occurred (see text for details).

Fig. 2
Fig. 2

Extinction spectra of the periodic array of nano-bricks with aspect ratio from 1 to 4, with the indicated light polarization. The L- and T-modes are shown together with the non-polarized light measurement (black line). Extinction scale is the same for all patterns.

Fig. 3
Fig. 3

Experimental SERS spectra of IR-26 adsorbed on gold nano-bricks of periodic pattern but different aspect ratio R. Note the difference in the vertical scale between the panels.

Fig. 4
Fig. 4

Normalized SERS signal as a function of aspect ratio R for the periodic patterns. The SERS signal was normalized to the extinction values at the excitation and Stokes 1558 cm−1 wavelengths; then, the value was further normalized to the SERS signal obtained on a periodic square (aspect ratio R = 1) pattern.

Fig. 5
Fig. 5

Polarization dependence of the extinction spectra for the periodic (top-row) and random Ran = 6 (bottom-row) arrangements of (a) square nano-bricks, and (b) nano-bricks with aspect ratio varying from R = 1 to 4.

Fig. 6
Fig. 6

SERS intensity maps of the major 1558 cm−1 Raman mode. On the vertical axis is the randomness Ran = 0 (periodic) to 6 and on the horizontal one is the maximum aspect ratio of the pattern, from R = 1 (squares) to 4 (seven different patterns changing in steps of 0.5, see Fig. 5. The plots show the polarization dependence of (a) L-mode and (b) T-mode.

Fig. 7
Fig. 7

SERS mapping at the 1558 cm−1 Raman wavelength for (a) periodic pattern with R = 1, (b) periodic pattern with mixture of R = 1 to 4, (c) random pattern with R = 1, and (d) random pattern with mixture of R = 1 to 4. The random pattern has randomness Ran = 6. Note that for all panels the SERS intensity scale is the same from 0 to 8000; the footprint of the SERS region was 100 × 100 μm2.

Fig. 8
Fig. 8

Extinction cross-sections numerically calculated for the periodic (top-row) and random Ran = 6 (bottom-row) arrangements of a 25-element cluster of (a) square nano-bricks, and (b) nano-bricks with aspect ratio varying from R = 1 to 4. The cross-sections are normalized to the total geometrical area of the gold in the cluster (black dashed line).

Fig. 9
Fig. 9

E-field intensity enhancement log-scale maps numerically calculated for (a,d) periodic layout (i) as compared with the highest enhancement condition for (b,e) T-mode (random layout (iv) and (c,f) L-mode (random layout (ii). The field sections are (top) xy-plane flush with the top of the nano-bricks and (bottom) vertical plane crossing the array center and parallel to the excitation polarization. The white dashed lines show (top) the position of the vertical plane sections and (bottom) the glass-air boundary. The box shows the total-field region, while outside the scattered field can be seen. Contour lines show constant intensity enhancement (1 for dark green, 10 for dark yellow).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P s ( ν s ) = N σ SERS L ( ν l ) 2 L ( ν s ) 2 I ( ν l ) ,
N L , T [ ε r ( ω L , T ) 1 ] = 1.

Metrics