Abstract

A multilayered metallic M-shaped nano-grating is proposed to enhance the internal quantum efficiency, light extraction efficiency and surface-plasmon (SP) extraction efficiency of the gallium nitride-based light emitting diodes. This structure is fabricated by the low-cost nano-imprint lithography. The suitable grating based on quasi-symmetrical-waveguide structure has a high transmission in the visible region. The properties of SP mode and the Purcell effect in this type of LED is investigated. The experimental results demonstrate that its peak photoluminescence intensity of the proposed LED is over 10 times greater than that from a naked GaN-LED without any nanostructure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, (Taylor & Francis, 2000).
  2. B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
    [CrossRef]
  3. X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).
  4. A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
    [CrossRef]
  5. T. J. Suleski and Y.-C. Chuang, “Nanotexturing in Ultraviolet Light-Emitting Diodes for Enhanced Light Extraction,” OSA/NANO (Optical Society of America, 2006) paper NWC2.
  6. D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
    [CrossRef]
  7. E. M.  Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  8. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), pp. 1–66.
  9. G. W.  Ford W. H.  Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  10. N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998).
    [CrossRef]
  11. I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
    [CrossRef]
  12. A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
    [CrossRef]
  13. K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [CrossRef]
  14. K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  15. R.  Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87(11), 111104 (2005).
    [CrossRef]
  16. J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
    [CrossRef]
  17. J.  Morland, A.  Adams, P. K.  Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982).
    [CrossRef]
  18. J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
    [CrossRef]
  19. D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
    [CrossRef]
  20. I. R.  Hooper J. R.  Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003).
    [CrossRef]
  21. S.  Wedge W. L.  Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
    [CrossRef] [PubMed]
  22. Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
    [CrossRef]
  23. K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
    [CrossRef]
  24. K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.
  25. W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
    [CrossRef]
  26. C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
    [CrossRef] [PubMed]
  27. Y. W.  Kiang, J. Y.  Wang, C. C.  Yang, “Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method,” Opt. Express 15(14), 9048–9062 (2007).
    [CrossRef] [PubMed]
  28. A.  Bay, N.  André, M.  Sarrazin, A.  Belarouci, V.  Aimez, L. A.  Francis, J. P.  Vigneron, “Optimal overlayer inspired by Photuris firefly improves light-extraction efficiency of existing light-emitting diodes,” Opt. Express 21(S1Suppl 1), A179–A189 (2013).
    [CrossRef] [PubMed]
  29. L. F. Li, A User’s Guide to DELTA©(Version 1.4): A Computer Program for Modeling Planar, One-dimensionally Periodic, Multilayer-coated, Diffraction Gratings (Tsinghua University, Copyright 1993–2009
  30. J.  Chandezon, M. T.  Dupuis, G.  Cornet, D.  Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [CrossRef]
  31. J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980).
    [CrossRef]
  32. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  33. http://refractiveindex.info/?group=CRYSTALS&material=HfO2
  34. J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
    [CrossRef]
  35. J.  Henson, E.  Dimakis, J.  DiMaria, R.  Li, S.  Minissale, L.  Dal Negro, T. D.  Moustakas, R.  Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express 18(20), 21322–21329 (2010).
    [CrossRef] [PubMed]
  36. J.  Yoon, S. H.  Song, J.-H.  Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008).
    [CrossRef] [PubMed]

2013 (1)

2010 (2)

J.  Henson, E.  Dimakis, J.  DiMaria, R.  Li, S.  Minissale, L.  Dal Negro, T. D.  Moustakas, R.  Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express 18(20), 21322–21329 (2010).
[CrossRef] [PubMed]

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

2009 (4)

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

2008 (3)

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

J.  Yoon, S. H.  Song, J.-H.  Kim, “Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: an upper limit,” Opt. Express 16(2), 1269–1279 (2008).
[CrossRef] [PubMed]

2007 (3)

Y. W.  Kiang, J. Y.  Wang, C. C.  Yang, “Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method,” Opt. Express 15(14), 9048–9062 (2007).
[CrossRef] [PubMed]

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

2006 (1)

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

2005 (3)

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

R.  Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87(11), 111104 (2005).
[CrossRef]

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

2004 (2)

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

S.  Wedge W. L.  Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

2003 (1)

I. R.  Hooper J. R.  Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003).
[CrossRef]

2002 (1)

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

2000 (1)

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

1999 (2)

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

1998 (1)

N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998).
[CrossRef]

1984 (1)

G. W.  Ford W. H.  Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1982 (2)

1980 (1)

J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980).
[CrossRef]

1946 (1)

E. M.  Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Adams, A.

J.  Morland, A.  Adams, P. K.  Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982).
[CrossRef]

Aimez, V.

Akasaki, I.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Amano, H.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

André, N.

Atwater, H. A.

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Barnes, W. L.

S.  Wedge W. L.  Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[CrossRef] [PubMed]

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

Bay, A.

Belarouci, A.

Bergman, J. P.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Biteen, J. S.

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Borodisky, M.

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Bouillard, J. S.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Chandezon, J.

J.  Chandezon, M. T.  Dupuis, G.  Cornet, D.  Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980).
[CrossRef]

Chen, C.-Y.

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Chen, H.-L.

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

Chen, J.

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

Chen, X. Y.

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Chen, Y.-S.

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

Cheng, C.

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

Cho, C.-O.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Cho, J.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Choi, W. J.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Chuang, W.-H.

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

Cornet, G.

Dal Negro, L.

Dalfors, J.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Dimakis, E.

DiMaria, J.

Ding, J. P.

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

Drezet, A.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Dupuis, M. T.

Ebbesen, T. W.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Everitt, H. O.

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Fan, Y.-X.

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

Ford, G. W.

G. W.  Ford W. H.  Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Francis, L. A.

Genet, C.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Gontijo, I.

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Hansma, P. K.

J.  Morland, A.  Adams, P. K.  Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982).
[CrossRef]

Hecker, N. E.

N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998).
[CrossRef]

Henson, J.

Holtz, P. O.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Hooper, I. R.

I. R.  Hooper J. R.  Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003).
[CrossRef]

Hopfel, R. A.

N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998).
[CrossRef]

Huang, C.-F.

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Im, J. S.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Jeon, H.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Jory, M. J.

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

Kawakami, Y.

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Keller, S.

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Kiang, Y. W.

Kiang, Y.-W.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

Kim, D.-H.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Kim, J.-H.

Kuroda, T.

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Laux, E.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Lee, C.-W.

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Lewis, N. S.

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Li, R.

Liao, C.-H.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

Lin, C.-H.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

Lin, H.

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Liu, S.

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Liu, Y.

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Lu, Y.-C.

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Lupton, J. M.

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

Mahboub, O.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Martín-Moreno, L.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Matterson, B. J.

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

Maystre, D.

J.  Chandezon, M. T.  Dupuis, G.  Cornet, D.  Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980).
[CrossRef]

Mertens, H.

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Minissale, S.

Mishra, U. K.

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Monemar, B.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Morland, J.

J.  Morland, A.  Adams, P. K.  Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982).
[CrossRef]

Moustakas, T. D.

Mukai, T.

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Neogi, A.

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Niki, I.

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nikitin, A. Y.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Okamoto, K.

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Paiella, R.

Park, Q.-H.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Park, Y.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Park, Y. S.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Polman, A.

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Pozina, G.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Przybilla, F.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Purcell, E. M.

E. M.  Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Raoult, G.

J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980).
[CrossRef]

Ren, X. C.

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Roh, Y.-G.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Sambles, J. R.

I. R.  Hooper J. R.  Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003).
[CrossRef]

Samuel, I. D. W.

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

Sarrazin, M.

Sawaki, N.

N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998).
[CrossRef]

Scherer, A.

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Sernelius, B. E.

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Shen, C.-W.

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

Shen, K.-C.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

Shen, N.-H.

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

Shvartser, A.

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Sone, C.

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

Song, S. H.

Spevak, I. S.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Sweatlock, L. A.

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Tackeuchi, A.

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

Tang, T.-Y.

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

Tsai, F.-J.

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

Vigneron, J. P.

Wang, H.-T.

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

Wang, J. Y.

Wang, J.-Y.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

Weber, W. H.

G. W.  Ford W. H.  Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Wedge, S.

Yablonvitch, E.

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

Yang, C. C.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

Y. W.  Kiang, J. Y.  Wang, C. C.  Yang, “Numerical study on surface plasmon polariton behaviors in periodic metal-dielectric structures using a plane-wave-assisted boundary integral-equation method,” Opt. Express 15(14), 9048–9062 (2007).
[CrossRef] [PubMed]

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Yang, Y.-J.

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

Yeh, D.-M.

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Yoon, J.

Yu, Z.-Y.

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

Zayats, A.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Zayats, A. V.

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

Zhang, X. S.

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Appl. Phys. Lett. (9)

A.  Drezet, F.  Przybilla, E.  Laux, O.  Mahboub, C.  Genet, T. W.  Ebbesen, J. S.  Bouillard, A.  Zayats, I. S.  Spevak, A. V.  Zayats, A. Y.  Nikitin, L.  Martín-Moreno, “Opening the light extraction cone of high index substrates with plasmonic gratings: Light emitting diode applications,” Appl. Phys. Lett. 95(2), 021101 (2009).
[CrossRef]

D.-H.  Kim, C.-O.  Cho, Y.-G.  Roh, H.  Jeon, Y. S.  Park, J.  Cho, J. S.  Im, C.  Sone, Y.  Park, W. J.  Choi, Q.-H.  Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87(20), 203508 (2005).
[CrossRef]

K.  Okamoto, I.  Niki, A.  Scherer, Y.  Narukawa, T.  Mukai, Y.  Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

R.  Paiella, “Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement,” Appl. Phys. Lett. 87(11), 111104 (2005).
[CrossRef]

J.  Chen, N.-H.  Shen, C.  Cheng, Y.-X.  Fan, J. P.  Ding, H.-T.  Wang, “Tunable resonance in surface-plasmon-polariton enhanced spontaneous emission using a denser dielectric cladding,” Appl. Phys. Lett. 89(5), 051916 (2006).
[CrossRef]

J. M.  Lupton, B. J.  Matterson, I. D. W.  Samuel, M. J.  Jory, W. L.  Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340–3342 (2000).
[CrossRef]

D.-M.  Yeh, C.-F.  Huang, C.-Y.  Chen, Y.-C.  Lu, C. C.  Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[CrossRef]

Y.-C.  Lu, Y.-S.  Chen, F.-J.  Tsai, J.-Y.  Wang, C.-H.  Lin, C.-Y.  Chen, Y.-W.  Kiang, C. C.  Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94(23), 233113 (2009).
[CrossRef]

W.-H.  Chuang, J.-Y.  Wang, C. C.  Yang, Y.-W.  Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92(13), 133115 (2008).
[CrossRef]

Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating (1)

K.-C.  Shen, C.-Y.  Chen, C.-H.  Liao, T.-Y.  Tang, C. C.  Yang, “Enhancement of polarized light-emitting diode through surface plasmon coupling generated on a metal grating,” OSA/ACP (Optical Society of America, 2009). Paper TuN5.

J. Appl. Phys. (1)

K.-C.  Shen, C.-H.  Liao, Z.-Y.  Yu, J.-Y.  Wang, C.-H.  Lin, Y.-W.  Kiang, C. C.  Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with Surface plasmon coupling,” J. Appl. Phys. 108(11), 113101 (2010).
[CrossRef]

J. Opt. (Paris) (1)

J.  Chandezon, D.  Maystre, G.  Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris) 11(4), 235–241 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

J. S.  Biteen, L. A.  Sweatlock, H.  Mertens, N. S.  Lewis, A.  Polman, H. A.  Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Nanotechnology (1)

C.-W.  Shen, J.-Y.  Wang, W.-H.  Chuang, H.-L.  Chen, Y.-C.  Lu, Y.-W.  Kiang, C. C.  Yang, Y.-J.  Yang, “Effective energy coupling and preservation in a surface plasmon-light emitter coupling system on a metal nanostructure,” Nanotechnology 20(13), 135202 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

K.  Okamoto, I.  Niki, A.  Shvartser, Y.  Narukawa, T.  Mukai, A.  Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Lett. A (1)

X. S.  Zhang, S.  Liu, Y.  Liu, X. Y.  Chen, H.  Lin, X. C.  Ren, “Enhancement of LED light extraction via diffraction of hexagonal lattice fabricated in ITO layer with holographic lithography and wet etching,” Phys. Lett. A 372, 2738–3740 (2008).

Phys. Rep. (1)

G. W.  Ford W. H.  Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. (1)

E. M.  Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (4)

I.  Gontijo, M.  Borodisky, E.  Yablonvitch, S.  Keller, U. K.  Mishra, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[CrossRef]

A.  Neogi, C.-W.  Lee, H. O.  Everitt, T.  Kuroda, A.  Tackeuchi, E.  Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002).
[CrossRef]

I. R.  Hooper J. R.  Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67(23), 235404 (2003).
[CrossRef]

J.  Morland, A.  Adams, P. K.  Hansma, “Efficiency of light emission from surface plasmons,” Phys. Rev. B 25(4), 2297–2300 (1982).
[CrossRef]

Physica E (1)

N. E.  Hecker, R. A.  Hopfel, N.  Sawaki, “Enhanced light emission from a single quantum well located near a metal coated surface,” Physica E 2(1-4), 98–101 (1998).
[CrossRef]

Proc. SPIE (1)

B.  Monemar, J. P.  Bergman, G.  Pozina, J.  Dalfors, B. E.  Sernelius, P. O.  Holtz, H.  Amano, I.  Akasaki, “Carrier and exciton dynamics in In0.15Ga0.85N/GaN multiple quantum well Structures,” Proc. SPIE 3624, 168–178 (1999).
[CrossRef]

Other (6)

S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, (Taylor & Francis, 2000).

T. J. Suleski and Y.-C. Chuang, “Nanotexturing in Ultraviolet Light-Emitting Diodes for Enhanced Light Extraction,” OSA/NANO (Optical Society of America, 2006) paper NWC2.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” in Advances in Chemical Physics, Vol. XXXVII, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), pp. 1–66.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

http://refractiveindex.info/?group=CRYSTALS&material=HfO2

L. F. Li, A User’s Guide to DELTA©(Version 1.4): A Computer Program for Modeling Planar, One-dimensionally Periodic, Multilayer-coated, Diffraction Gratings (Tsinghua University, Copyright 1993–2009

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication procedure of the MMG. (a) The naked or unprocessed sample. (b) The M-shaped grating formed in the p-GaN layer fabricated by NIL. (c) The finally obtained MMG structure after coating three layers. (d) SEM image of the fabricated MG sample. (e) The geometric parameters of the ‘M’ shape.

Fig. 2
Fig. 2

Schematic illustration of the layered structure utilized in the simulations. The light-wave at the incident angle θ is incident from the GaN substrate with a semi-infinite thickness. The 3D coordinate is also shown here. The z-axis is perpendicular to the x-y plane.

Fig. 3
Fig. 3

(a) The transmission versus wavelength for different periods. The polarization is TM. (b) The TE transmission versus wavelength for different periods. (c) The TM transmission versus wavelength for different thicknesses of the HfO2 layer in MMG. The TM transmissions of the MG and naked samples are also shown. (d) The TE transmission versus wavelength for different thicknesses of the HfO2 layer in MMG. The TE transmissions of the MG and naked samples are also shown.

Fig. 4
Fig. 4

(a) The absorption versus incident angle at 490 nm, 510 nm and 530 nm wavelengths. The peak labeled by ‘SPP’ indicates the SPP resonance at 510 nm wavelength. The resonance angle is about 40°. (b) The −1st order transmission versus incidence angle at 490 nm, 510 nm and 530 nm wavelengths. The peak labeled by ‘SPP’ signifies the SPP resonance at 510 nm wavelength. (c) Distribution of the x component of the electric field (Ex) at SPP resonance of 510 nm wavelength. The bottom of the whole simulation region represents the QW. (d) Distribution of the y component of the electric field (Ey) at SPP resonance of 510 nm wavelength. (e) Distribution of the time-average Poynting vector at the SPP resonance of 510 nm wavelength.

Fig. 5
Fig. 5

Snap shots of the calculated magnitude distribution of electric field in the x-y plane of the MMG.

Fig. 6
Fig. 6

(a) The excitation/emission configuration of PL measurement. The excitation laser was normally incident upon the sample from the top side (HfO2 side). (b) The top-emitting PL intensities of the naked, MG and MMG samples respectively. The PL peak intensity of naked sample was normalized to 1. The dotted lines represent the modified PL intensities, considering the pumping efficiency. They are fairer to be compared with the naked sample than the un-modified ones.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η ext = C ext k rad + C SPP k SPP k rad + k SPP + k nonrad
η int = k rad + k SPP k rad + k SPP + k nonrad =1 1 η int Fp

Metrics