Abstract

A compact micro-optical interferometer is presented that combines two optical 90° hybrids or, alternatively, four delay interferometers into one interferometer structure sharing one tunable delay line. The interferometer can function as a frontend of either a coherent receiver or of a self-coherent receiver by adjusting the waveplates and the delay line. We built a prototype on a LIGA bench. We characterized the device and demonstrated its functionality by successful reception of a 112 Gbit/s signal.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, P. J. Winzer, Y.-K. Chen, S. Chandrasekhar, M. S. Rasras, L. Chen, T.-Y. Liow, K.-W. Ang, and G.-Q. Lo, “Monolithic polarization and phase diversity coherent receiver in silicon,” J. Lightwave Technol.28(4), 520–525 (2010).
    [CrossRef]
  2. J. Rahn, G. Goldfarb, H.-S. Tsai, W. Chen, S. Chu, B. Little, J. Hryniewicz, F. Johnson, W. Chen, T. Butrie, J. Zhang, M. Ziari, J. Tang, A. Nilsson, S. Grubb, I. Lyubomirsky, J. Stewart, R. Nagarajan, F. Kish, and D. F. Welch, “Low-power, polarization tracked 45.6 GB/s per wavelength PM-DQPSK receiver in a 10-channel integrated module,” in Proc. Optical Fiber Communication Conference (OFC’10), paper OThE2 (2010).
    [CrossRef]
  3. C. R. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in Proc. European Conference on Optical Communication (ECOC’10), post-deadline paper PD3.6 (2010).
    [CrossRef]
  4. Y. C. Hsieh, “Free-space optical hybrid,” US Patent Application 02223932 A1 (2007).
  5. C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijević, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, and D. Bimberg, “80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering,” Opt. Express19(6), 5134–5142 (2011).
    [CrossRef] [PubMed]
  6. J. Li, K. Worms, R. Maestle, D. Hillerkuss, W. Freude, and J. Leuthold, “Free-space optical delay interferometer with tunable delay and phase,” Opt. Express19(12), 11654–11666 (2011).
    [CrossRef] [PubMed]
  7. X. Liu, S. Chandrasekhar, and A. Leven, “Digital self-coherent detection,” Opt. Express16(2), 792–803 (2008).
    [CrossRef] [PubMed]
  8. W. Menz and J. Mohr, “Mikrosystemtechnik für Ingenieure,” Zweite erweitert Auflage, VCH Verlag (1997).
  9. S. Schuele, S. Hengsbach, U. Hollenbach, J. Li, J. Leuthold, and J. Mohr, “Active modular microsystems based on Mach-Zehnder interferometers,” in Proc. SPIE Photonics Europe, Nonlinear Optics and its Applications 7716, paper 7716−36 (2010).
    [CrossRef]
  10. G. Bosco and P. Poggiolini, “On the joint effect of receiver impairments on direct-detection DQPSK systems,” J. Lightwave Technol.24(3), 1323–1333 (2006).
    [CrossRef]

2011 (2)

2010 (1)

2008 (1)

2006 (1)

Ang, K.-W.

Arsenijevic, D.

Bimberg, D.

Bonk, R.

Bosco, G.

Chandrasekhar, S.

Chen, L.

Chen, Y.-K.

Doerr, C. R.

Fiol, G.

Freude, W.

Galperin, A.

Hillerkuss, D.

Leuthold, J.

Leven, A.

Li, J.

Liow, T.-Y.

Liu, X.

Lo, G.-Q.

Maestle, R.

Meuer, C.

Poggiolini, P.

Rasras, M. S.

Schmeckebier, H.

Schmidt-Langhorst, C.

Schubert, C.

Winzer, P. J.

Worms, K.

J. Lightwave Technol. (2)

Opt. Express (3)

Other (5)

J. Rahn, G. Goldfarb, H.-S. Tsai, W. Chen, S. Chu, B. Little, J. Hryniewicz, F. Johnson, W. Chen, T. Butrie, J. Zhang, M. Ziari, J. Tang, A. Nilsson, S. Grubb, I. Lyubomirsky, J. Stewart, R. Nagarajan, F. Kish, and D. F. Welch, “Low-power, polarization tracked 45.6 GB/s per wavelength PM-DQPSK receiver in a 10-channel integrated module,” in Proc. Optical Fiber Communication Conference (OFC’10), paper OThE2 (2010).
[CrossRef]

C. R. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” in Proc. European Conference on Optical Communication (ECOC’10), post-deadline paper PD3.6 (2010).
[CrossRef]

Y. C. Hsieh, “Free-space optical hybrid,” US Patent Application 02223932 A1 (2007).

W. Menz and J. Mohr, “Mikrosystemtechnik für Ingenieure,” Zweite erweitert Auflage, VCH Verlag (1997).

S. Schuele, S. Hengsbach, U. Hollenbach, J. Li, J. Leuthold, and J. Mohr, “Active modular microsystems based on Mach-Zehnder interferometers,” in Proc. SPIE Photonics Europe, Nonlinear Optics and its Applications 7716, paper 7716−36 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of a polarization and phase diverse coherent receiver and self-coherent receiver frontend. The left column presents from top to bottom the transformation from a conventional coherent receiver (a) to a free-space optics interferometer configuration (e). The right column (f) to (j) presents a similar transformation for the self-coherent receiver. Both receiver types can be realized with the same device. ⊥: s-polarized light; //: p-polarized light.

Fig. 2
Fig. 2

Fabrication steps for the LIGA process. Pictures of the (a) premask (Ti-foil with Au structures), of the (b) master mask (invar-foil), and of the final (c) micro-optical bench (PMMA).

Fig. 3
Fig. 3

Photograph of a complete micro-optical interferometer. (a) Side view; (b) Top view with beam paths; (c) Top view of a Euro cent and the complete micro-optical interferometer including the motor.

Fig. 4
Fig. 4

Micro-optical interferometer as self-coherent receiver. Spectral responses of outputs 1 (dark green dashed line), 2 (light green dashed line), 3 (dark green solid line) and 4 (light green solid line) at p-polarization in a wavelength range 1549.5 nm … 1550.5 nm. Free spectral range (a) 17.5 GHz, and (b) 50 GHz. Spectral responses of outputs 5 (dark green dashed line), 6 (light green dashed line), 7 (dark green solid line) and 8 (light green solid line) at s-polarization for 1549.5 nm … 1550.5 nm. Free spectral ranges (c) 17.5 GHz and (d) 50 GHz.

Fig. 5
Fig. 5

Micro-optical interferometer as self-coherent receiver. Spectral responses at outputs 1 (dark green dashed line), 2 (light green dashed line), 3 (dark green solid line) and 4 (light green solid line) for p-polarization and FSR = 25 GHz. Wavelength range (a) 1526.5…1527.5 nm, (c) 1549.5 …1550.5 nm, (e) 1564.5…1565.5 nm. Spectral responses of outputs 5 (dark green dashed line), 6 (light green dashed line), 7 (dark green solid line) and 8 (light green solid line) at s-polarization and FSR = 25 GHz. Wavelength ranges (b) 1526.5…1527.5 nm and (d) 1549.5…1550.5 nm, (f) 1564.5…1565.5 nm.

Fig. 6
Fig. 6

Experimental setup and results for self-coherent and coherent receivers with the micro-optical interferometer serving as a frontend. (a) Schematic of the experiment setup. (b) Constellation diagrams of the signals received by a self-coherent receiver. (c) Constellation diagrams of the signals received by a coherent receiver.

Tables (2)

Tables Icon

Table 1 Output numbering in coherent and in self-coherent receiver

Tables Icon

Table 2 Polarization extinction ratios for the outputs of micro-optical interferometer as coherent detection scheme.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E sig =[ E sig-s E sig-p ]=[ A sig-s e j ω sig t A sig-p e j ω sig t ], E LO =[ E LO-s E LO-p ]=[ A LO-s e j ω LO t A LO-p e j ω LO t ].
[ E s B E p B ]= 1 2 [ 1 0 0 1 ] NPBS [ j E LO-s E sig-p ]= 1 2 [ j E LO-s E sig-p ].
[ E s C E p C ]= [ 0 1 1 0 ] HWP45° 1 2 [ j E LO-s E sig-p ]= 1 2 [ E sig-p j E LO-s ].
[ E s D E p D ]= [ j 0 0 1 ] QWP0° 1 2 [ E sig-p j E LO-s ]= 1 2 [ j E sig-p j E LO-s ].
[ E s E E p E ]= j 2 [ 1 0 0 1 ] NPBS [ j E LO-s E sig-p ]= 1 2 [ E LO-s j E sig-p ].
[ E ΔI-p E ΔQ-p ]= 1 2 [ j( E sig-p E LO-s ) j( E sig-p j E LO-s ) ],[ E ΣI-p E ΣQ-p ]= 1 2 [ E sig-p + E LO-s ( E sig-p +j E LO-s ) ].
[ E ΣI-s E ΔQ-s ]= 1 2 [ j( E sig-s + E LO-p ) E sig-s j E LO-p ],[ E ΔI-s E ΣQ-s ]= 1 2 [ ( E sig-s E LO-p ) j( E sig-s +j E LO-p ) ].
E sig =[ E sig-s E sig-p ].
[ E s A E p A ]=δ( tτ ){ 1 2 [ 1+j 1j 1j 1+j ] QWP45° 1 2 [ 1 0 0 1 ] NPBS [ j E sig-s (t) 0 ] } = E sig-s ( tτ ) 2 2 [ 1+j 1+j ].
[ E s B E p B ]= [ j 0 0 1 ] QWP0° E sig-s ( tτ ) 2 2 [ 1+j 1+j ]= E sig-s ( tτ ) 2 2 [ 1j 1+j ].
[ E s C E p C ]= 1 2 [ 1+j 1j 1j 1+j ] QWP45° j 2 [ 1 0 0 1 ] NPBS [ j E sig-s (t) 0 ]= E sig-s (t) 2 2 [ 1+j 1j ].
[ E ΔQ-s (t) E ΔI-s (t) ]= e j135° 2 2 [ E sig-s (t)j E sig-s (tτ) E sig-s (t) E sig-s (tτ) ], [ E ΣQ-s (t) E ΣI-s (t) ]= e j45° 2 2 [ E sig-s (t)+j E sig-s (tτ) E sig-s (t)+ E sig-s (tτ) ].
[ E ΔQ-p (t) E ΔI-p (t) ]= e j45° 2 2 [ E sig-p (t)j E sig-p (tτ) ( E sig-p (t) E sig-p (tτ) ) ], [ E ΣQ-p (t) E ΣI-p (t) ]= e j135° 2 2 [ E sig-p (t)+j E sig-p (tτ) ( E sig-p (t)+ E sig-p (tτ) ) ].

Metrics