Abstract

In this paper we report on the design, fabrication and characterization of terahertz (THz) bi-material sensors with metamaterial absorbers. MEMS fabrication-friendly SiOx and Al are used to maximize the bimetallic effect and metamaterial absorption at 3.8 THz, the frequency of a quantum cascade laser illumination source. Sensors with different configurations were fabricated and the measured absorption is near 100% and responsivity is around 1.2 deg/μW, which agree well with finite element simulations. The results indicate the potential of using these detectors to fabricate focal plane arrays for real time THz imaging.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
    [CrossRef]
  2. S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
    [CrossRef]
  3. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008).
    [CrossRef] [PubMed]
  4. J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
    [CrossRef]
  5. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
    [CrossRef] [PubMed]
  6. A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
    [CrossRef]
  7. B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008).
    [CrossRef] [PubMed]
  8. D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
    [CrossRef]
  9. B. Su and G. Duan, “A High sensitivity THz detector,” Proc. SPIE8195, 81951K (2011).
    [CrossRef]
  10. X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).
  11. G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).
  12. J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
    [CrossRef]
  13. S. Timoshenko, “Analysis of bi-metal thermostat,” J. Opt. Soc. Am.11(3), 233–255 (1925).
    [CrossRef]
  14. J. A. Harkey and T. W. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” J. Microelectromech. Syst.9(2), 226–235 (2000).
    [CrossRef]
  15. S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
    [CrossRef]
  16. J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004).
    [CrossRef]
  17. Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
    [CrossRef]
  18. T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation,” J. Opt. Soc. Am. A26(11), 2353–2361 (2009).
    [CrossRef] [PubMed]
  19. T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
    [CrossRef]
  20. S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
    [CrossRef]
  21. Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002).
    [CrossRef]
  22. F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
    [CrossRef]
  23. H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
    [CrossRef]
  24. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011).
    [CrossRef] [PubMed]
  25. H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011).
    [CrossRef]
  26. H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and Terahertz wave sensing with metamaterials,” Opt. Express19(22), 21620–21626 (2011).
    [CrossRef] [PubMed]
  27. F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
    [CrossRef]
  28. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bi-material Terahertz Sensor with Integrated Metamaterial Absorber,” Opt. Lett.37(11), 1886–1888 (2012).
    [CrossRef] [PubMed]
  29. Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
    [CrossRef]
  30. P. W. Kruse, “Uncooled Infrared Imaging Arrays and Systems,” in Semiconductors and Semimetals47: Uncooled Infrared Imaging Arrays and Systems, P. W. Kruse and D.D. Skatrud, ed. (Academic Press, 1997).
  31. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004).
    [CrossRef]
  32. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).
  33. P. W. Kruse, Uncooled Thermal Imaging, Arrays Systems and Applications (SPIE Press, 2002).
  34. Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001).
    [CrossRef]
  35. D. Briggs, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (personal communication, 2012).
  36. B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
    [CrossRef]
  37. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]
  38. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
    [CrossRef] [PubMed]
  39. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17(22), 20256–20265 (2009).
    [CrossRef] [PubMed]
  40. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
    [CrossRef]
  41. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
    [CrossRef] [PubMed]
  42. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett.34(19), 3012–3014 (2009).
    [CrossRef] [PubMed]
  43. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
    [CrossRef]
  44. S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
    [CrossRef]

2013 (1)

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

2012 (3)

2011 (8)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett.36(6), 945–947 (2011).
[CrossRef] [PubMed]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and Terahertz wave sensing with metamaterials,” Opt. Express19(22), 21620–21626 (2011).
[CrossRef] [PubMed]

H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

B. Su and G. Duan, “A High sensitivity THz detector,” Proc. SPIE8195, 81951K (2011).
[CrossRef]

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).

H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
[CrossRef]

2010 (2)

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (6)

B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008).
[CrossRef] [PubMed]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
[CrossRef]

2007 (4)

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

2006 (2)

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

2005 (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

2004 (3)

J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004).
[CrossRef]

2003 (2)

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

2002 (1)

Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002).
[CrossRef]

2001 (1)

Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001).
[CrossRef]

2000 (1)

J. A. Harkey and T. W. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” J. Microelectromech. Syst.9(2), 226–235 (2000).
[CrossRef]

1999 (1)

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

1925 (1)

Alves, F.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bi-material Terahertz Sensor with Integrated Metamaterial Absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

Amantea, R. A.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Averitt, R. D.

Azad, A. K.

H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
[CrossRef]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Ban, D.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Behnken, B. N.

Berman, G. P.

G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).

Bilhop, A. R.

G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).

Bingham, C. M.

Bjarnason, J. E.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

Boucherif, A.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Bourne, N.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

Brown, E. R.

Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett.33(11), 1258–1260 (2008).
[CrossRef] [PubMed]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

Brückl, H.

Carley, L. R.

J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004).
[CrossRef]

Celis, M. A.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

Chamberlin, D. R.

Chan, T. L. J.

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

Chen, D.

T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation,” J. Opt. Soc. Am. A26(11), 2353–2361 (2009).
[CrossRef] [PubMed]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
[CrossRef]

Chen, H.-T.

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20(7), 7165–7172 (2012).
[CrossRef] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Chen, Q.

Cheng, T.

Cheng, Y. Z.

H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011).
[CrossRef]

Chenrobrod, B. M.

G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).

Clothier, R. H.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

Culjat, M. O.

Cumming, D. R. S.

Datskos, P. G.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004).
[CrossRef]

Defise, J. M.

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

Djuric, Z.

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

Dong, F.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Duan, G.

B. Su and G. Duan, “A High sensitivity THz detector,” Proc. SPIE8195, 81951K (2011).
[CrossRef]

Duan, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Dupont, E.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Faist, J.

B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008).
[CrossRef] [PubMed]

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Fan, K.

Fathololoumi, S.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Fedder, G. K.

J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Fleury-Frenette, K.

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

Ford, J.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Gershtein, S.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Giovannini, M.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Gong, R. Z.

H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011).
[CrossRef]

Goodman, L. A.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Gorshkov, V.

G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).

Grant, J.

Gray, J.

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Grbovic, D.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bi-material Terahertz Sensor with Integrated Metamaterial Absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
[CrossRef]

Grundfest, W. S.

Guo, Z.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Habraken, S.

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Harkey, J. A.

J. A. Harkey and T. W. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” J. Microelectromech. Syst.9(2), 226–235 (2000).
[CrossRef]

Harris, G.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Harris, J. S.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Hastanin, J.

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

Hatami, F.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Horowitz, R.

Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002).
[CrossRef]

Hoyler, N.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Hu, Z. Y.

Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001).
[CrossRef]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Hunter, S.

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Hunter, S. R.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Jiao, B.

T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation,” J. Opt. Soc. Am. A26(11), 2353–2361 (2009).
[CrossRef] [PubMed]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Jokic, I.

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

Kadlec, E. A.

Karunasiri, G.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bi-material Terahertz Sensor with Integrated Metamaterial Absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

B. N. Behnken, G. Karunasiri, D. R. Chamberlin, P. R. Robrish, and J. Faist, “Real-time imaging using a 2.8 THz quantum cascade laser and uncooled infrared microbolometer camera,” Opt. Lett.33(5), 440–442 (2008).
[CrossRef] [PubMed]

Kearney, B.

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bi-material Terahertz Sensor with Integrated Metamaterial Absorber,” Opt. Lett.37(11), 1886–1888 (2012).
[CrossRef] [PubMed]

Kenny, T. W.

J. A. Harkey and T. W. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” J. Microelectromech. Syst.9(2), 226–235 (2000).
[CrossRef]

Khalid, A.

Kharas, D. B.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Kim, S. M.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

King, D.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Kumar, S.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Kurian, A. W.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Kwon, O.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

Laframboise, S. R.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Lamovecet, J.

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

Landy, N. I.

Lavrik, N. V.

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004).
[CrossRef]

Lee, A. W. M.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

Lee, H.

Li, C.

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Li, Y. X.

Liang, E.

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

Liu, H. C.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Liu, X.

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

Liu, Y. L.

Lu, X.

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

Luo, H.

H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011).
[CrossRef]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

Ma, Y.

Maier, T.

Majumdar, A.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

Maley, N.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Mao, M.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

Mao, M. Y.

Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002).
[CrossRef]

Matey, J. R.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Matovic, J.

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

Maurer, G.

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Miao, Z.

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Norton, P.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

O’Hara, J. F.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

O'Hara, J. F.

H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Padilla, W. J.

Pan, L.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Perazzo, T.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

Perna, S. N.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Qing Hu,

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Radhakrishnan, S.

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Rajic, S.

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004).
[CrossRef]

Randjelovic, D.

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

Reno, J. L.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Renotte, Y.

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

Robrish, P. R.

Saha, S. C.

Scalari, G.

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Shaner, E. A.

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Simelgor, G.

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Singh, R. S.

Strikwerda, A. C.

Su, B.

B. Su and G. Duan, “A High sensitivity THz detector,” Proc. SPIE8195, 81951K (2011).
[CrossRef]

Suen, J. Y.

Tao, H.

Taylor, A. J.

H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Taylor, Z. D.

Thundat, T.

Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001).
[CrossRef]

Timoshenko, S.

Varesi, J. B.

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

Wang, B.

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

Wang, W.

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Warmack, R. J.

Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001).
[CrossRef]

Wen, Q. Y.

White, L. K.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Wil, B. S.

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Wu, J.

J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004).
[CrossRef]

Wu, X.

T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation,” J. Opt. Soc. Am. A26(11), 2353–2361 (2009).
[CrossRef] [PubMed]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Xie, Y. S.

Xiong, Z.

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Yang, G.

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

Yang, Q. H.

Yu, Y.

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

Zhang, H. W.

Zhang, Q.

T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation,” J. Opt. Soc. Am. A26(11), 2353–2361 (2009).
[CrossRef] [PubMed]

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Zhang, X.

Zhao, Y.

Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002).
[CrossRef]

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett.88(15), 153903 (2006).
[CrossRef]

J. E. Bjarnason, T. L. J. Chan, A. W. M. Lee, M. A. Celis, and E. R. Brown, “Millimeter-wave, terahertz, and midinfrared transmission through common clothing,” Appl. Phys. Lett.85(4), 519–521 (2004).
[CrossRef]

T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J. B. Varesi, and P. Norton, “Infrared vision uncooled micro-optomechanical camera,” Appl. Phys. Lett.74(23), 3567–3569 (1999).
[CrossRef]

F. Alves, B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, “Strong terahertz absorption using SiO2/Al based metamaterial structures,” Appl. Phys. Lett.100(11), 111104 (2012).
[CrossRef]

Eur. Phys. J. B (1)

H. Luo, Y. Z. Cheng, and R. Z. Gong, “Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches,” Eur. Phys. J. B81(4), 387–392 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.44(12), 1139–1144 (2008).
[CrossRef]

IEEE J. Sol. Stat. Circ. (1)

J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-g/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Sol. Stat. Circ.39(5), 722–730 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. W. M. Lee, B. S. Wil, S. Kumar, Qing Hu, and J. L. Reno, “Real-time imaging Using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006).
[CrossRef]

Infrared Phys. Technol. (1)

Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovecet, “A new approach to IR bimaterial detectors theory,” Infrared Phys. Technol.50(1), 51–57 (2007).
[CrossRef]

J. Appl. Phys. (2)

Z. Y. Hu, T. Thundat, and R. J. Warmack, “Investigation of adsorption and absorption-induced stresses using microcantilever sensors,” J. Appl. Phys.90(1), 427–431 (2001).
[CrossRef]

D. Grbovic, N. V. Lavrik, S. Rajic, and P. G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors,” J. Appl. Phys.104(5), 054508 (2008).
[CrossRef]

J. Biol. Phys. (1)

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys.29(2/3), 179–185 (2003).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (2)

J. A. Harkey and T. W. Kenny, “1/f noise considerations for the design and process optimization of piezoresistive cantilevers,” J. Microelectromech. Syst.9(2), 226–235 (2000).
[CrossRef]

Y. Zhao, M. Y. Mao, and R. Horowitz, “Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance,” J. Microelectromech. Syst.11(2), 136–146 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Laser Phot. Rev. (1)

H. T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Phot. Rev.5(4), 513–533 (2011).
[CrossRef]

Opt. Eng. (1)

B. Kearney, F. Alves, D. Grbovic, and G. Karunasiri, “Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications,” Opt. Eng.52(1), 013801 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Optoelec. Lett. (1)

Q. Zhang, Z. Miao, Z. Guo, F. Dong, Z. Xiong, X. Wu, D. Chen, C. Li, and B. Jiao, “Optical readout uncooled infrared imaging detector using knife-edge filter operation,” Optoelec. Lett.3(2), 119–122 (2007).
[CrossRef]

Phys. Rev. B (2)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnet like metamaterial-based film terahertz absorbers,” Phys. Rev. B82(20), 205117 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105(7), 073901 (2010).
[CrossRef] [PubMed]

Proc. SPIE (6)

S. R. Hunter, R. A. Amantea, L. A. Goodman, D. B. Kharas, S. Gershtein, J. R. Matey, S. N. Perna, Y. Yu, N. Maley, and L. K. White, “High-sensitivity uncooled microcantilever infrared imaging arrays,” Proc. SPIE5074, 469–480 (2003).
[CrossRef]

B. Su and G. Duan, “A High sensitivity THz detector,” Proc. SPIE8195, 81951K (2011).
[CrossRef]

X. Liu, B. Wang, X. Lu, E. Liang, and G. Yang, “Far infrared/terahertz micromechanical imaging-array sensors based on nano-scale optical measurement technology,” Proc. SPIE7204, 720403 (2011).

G. P. Berman, B. M. Chenrobrod, A. R. Bilhop, and V. Gorshkov, “Uncooled infrared and terahertz detectors based on micromechanical mirror as a radiation pressure sensor,” Proc. SPIE8195, 819518 (2011).

J. Hastanin, Y. Renotte, K. Fleury-Frenette, J. M. Defise, and S. Habraken, “A far infrared/terahertz micromechanical sensor based on surface plasmons resonance,” Proc. SPIE7113, 71131C, 71131C-9 (2008).
[CrossRef]

S. Hunter, G. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25μm and 50μm pitch microcantilever IR imaging arrays,” Proc. SPIE6542, 65421F, 65421F-13 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum.75(4), 1134–1148 (2004).
[CrossRef]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons, and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Sens. Actuators A Phys. (1)

F. Dong, Q. Zhang, D. Chen, L. Pan, Z. Guo, W. Wang, Z. Duan, and X. Wu, “An uncooled optically readable infrared imaging detector,” Sens. Actuators A Phys.133(1), 236–242 (2007).
[CrossRef]

Other (4)

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

P. W. Kruse, Uncooled Thermal Imaging, Arrays Systems and Applications (SPIE Press, 2002).

D. Briggs, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (personal communication, 2012).

P. W. Kruse, “Uncooled Infrared Imaging Arrays and Systems,” in Semiconductors and Semimetals47: Uncooled Infrared Imaging Arrays and Systems, P. W. Kruse and D.D. Skatrud, ed. (Academic Press, 1997).

Supplementary Material (2)

» Media 1: MOV (3481 KB)     
» Media 2: MOV (3717 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Bi-material sensor. (a) 3D view of the THz bi-material sensor with metamaterial absorber, fabricated on a Si substrate. (b) Close up of an isolated bi-material beam which length is lb, and metal and dielectric thickness t1 and t2 respectively. Δzleg and Δθ are the linear and angular deflection of the beam, respectively.

Fig. 2
Fig. 2

Thermomechanical deflection of the bi-material sensor. (a) Freestanding flat THz absorber connected to a bi-material beam, whose length is lb, and metal and dielectric thickness t1 and t2 respectively. Δzabs is the total linear displacement and Δθ is the angular deflection of the absorber. (b) Thermomechanical sensitivity (dθ/dT) of the structure of part (a), calculated using (3) for all combinations of metal/dielectric of Table 1 where t1 varies from 10 to 800 nm and t2 is fixed in 1.1 μm. The circular marker shows FE and experimental results for t1 = 170 nm.

Fig. 3
Fig. 3

Metamaterial absorber. (a) Schematics of a metamaterial unit cell of a periodic array of Al square elements separated from an Al ground plane by a SiOx layer. (b) Metamaterial test structures with 20 μm period and varying square dimension (s), fabricated in a Si substrate [36].

Fig. 4
Fig. 4

Finite element modeling of a metamaterial unit cell using COMSOL Multiphysics RF module. (a) Unit cell simulation parameters. Two external ports and periodic boundary conditions allow the extraction of the S-parameters and consequently reflection and transmission. Integration of the resistive loss gives the absorbed energy in the unit cell. (b) The arrows (proportional plot) represent the anti-parallel surface currents excited in the two metallic layers in the metamaterial unit cell, while the surface colors represent the electric field magnitude. Notice that there is no transmission of the incident wave.

Fig. 5
Fig. 5

Finite element simulations of a metamaterial unit cell using COMSOL Multiphysics RF module. (a) The surface colors represent the resistive loss in the structure where blue represents no loss. The arrows (proportional plot) represent the average power flow in the unit cell. Notice that there is no power transmitted. (b) Comparison between measurement (solid lines) and FE simulations (dashed lines) of absorptance of three metamaterial structures fabricated with the same repetition period (20 μm) and different square sizes.

Fig. 6
Fig. 6

Structural parameters of the three bi-material THz sensors. (a) Top view of sensor A showing all dimensions. (b) Top view of sensors B and C, showing the differences in sizes of the thermal insulator anchors. (c) Vertical cut of the sensor structure.

Fig. 7
Fig. 7

FE simulations showing the deformation plots of sensor A (a), B (b) and C (c) under a constant 1 μW heat flux. The z-axes are scaled up 20 times for visual purposes. The surface colors indicate the temperature distribution according to the color bar on the left. (d) Time domain simulation of all three sensors under a 1 μW step excitation (black line). Temperature change and angular displacement are shown on the left and on the right, respectively.

Fig. 8
Fig. 8

Fabricated THz bi-material sensors. (a) 3D optical profile of sensor A (the aspect ratio is preserved). (b) Micrograph of an array of sensor A. (c) 2D profile taken along the bi-material legs direction (y-profile) with the processing direction (z-profile) scale exaggerated to show the residual deflection of the legs (red line) and absorber (blue line). (c) Micrographs showing the top view of sensors A, B and C.

Fig. 9
Fig. 9

(a) Measurement of the absorptance spectra of the THz sensors metamaterial structure (blue line) compared with the QCL normalized emission (read line). (b) Measured angular deflection (markers) upon temperature chance. Notice that the effect is linear and almost indistinguishable among the sensors, resulting in approximately 0.2 deg/K thermomechanical sensitivity.

Fig. 10
Fig. 10

Responsivity and NEP measurements. (a) Measured angular deflection per varying incident power for all three sensors (colored markers) Notice that responsivity increases as thermal conductance decreases. (b) Measured output voltage of the PSD for sensor A by gating the QCL output at 200 mHz. The power incident in the detector is shown on the right vertical axis.

Fig. 11
Fig. 11

Time and frequency domain measurements. (a) Time responses of sensors A, B and C measured under the same incident power with the QCL gated at 1 Hz. Noticed that sensor A is more sensitive and slower, which agrees with the predictions and previous measurements. (b) Normalized frequency responses for the three sensors (colored lines). The time constants were retrieved by taking the inverse of the 3 dB frequencies that are 1.2, 2.1 and 3.2 rad/s for sensor A, B and C respectively.

Fig. 12
Fig. 12

QCL beam imaging. (a) Optical readout used to record videos [46] and the snap shot showed in part (c). The images were recorded using background subtraction to suppress to the effects of the residual stress of the sensors. (b) Image obtained using a 30 μm pitch commercial IR microbolometer camera with THz optics. (c) Image (Media 1) of the same QCL beam, gated at 500 mHz, obtained using an array of sensor A with 430 μm pitch using the readout depicted in part (a). Notice that since the pitch of our sensor are one order of magnitude higher than the IR camera, it cannot resolve the rings associated with the QCL beam, showed in part (b). (d) Close up of sensor A (Media 2) moving due to THz absorption of a QCL beam, gated at 500 mHz.

Tables (2)

Tables Icon

Table 1 Properties of standard MEMS materialsa.

Tables Icon

Table 2 THz bi-material sensor analytical numerical and experimental parameters.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dT= η P 0 G 1+ ω 2 τ 2 ,
dθ dP = η G 1+ ω 2 τ 2 dθ dT ,
dθ dT =6 l b ( t 1 + t 2 ) t 2 2 ( 4+6 t 1 t 2 +4 t 1 2 t 2 2 + t 1 3 t 2 3 E 1 E 2 + t 2 t 1 E 2 E 1 ) 1 ( α 1 α 2 ),
G= g th A C l ,
C= c th ρ A S t,
δ θ 2 TF 1 2 = ( dθ / dP )T 4 k B GB η ,
δ θ 2 TM 1 2 = 360 π l b 4 k B TB Qk ω 0 ,

Metrics