Abstract

The compact LD end-pumped passively Q-switched c-cut Nd:YVO4/Cr4+:YAG self-Raman laser is realized, and its output performance is investigated in detail. The maximum average output power at 1178nm is 800mW with the pulse repetition frequency of 44kHz and pulse width of 2.6ns, and the first Stokes conversion efficiency is 10.1%. The outputs of fundamental and first Stokes laser are found to be linearly polarized along the diagonals of the rectangular cross section of the c-cut Nd:YVO4 crystal, and the polarization mode competition is observed in the outputs of fundamental and first Stokes laser.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett.32(20), 2951–2953 (2007).
    [CrossRef] [PubMed]
  2. Z. H. Cong, X. Y. Zhang, Q. P. Wang, Z. J. Liu, X. H. Chen, S. Z. Fan, X. L. Zhang, H. J. Zhang, X. T. Tao, and S. T. Li, “Theoretical and experimental study on the Nd:YAG/BaWO4/KTP yellow laser generating 8.3 W output power,” Opt. Express18(12), 12111–12118 (2010).
    [CrossRef] [PubMed]
  3. X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, S. T. Li, Z. H. Cong, G. H. Jia, and C. Y. Tu, “Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser,” Opt. Lett.33(7), 705–707 (2008).
    [CrossRef] [PubMed]
  4. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett.29(16), 1915–1917 (2004).
    [CrossRef] [PubMed]
  5. S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
    [CrossRef]
  6. C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
    [CrossRef]
  7. A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
    [CrossRef]
  8. T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
    [CrossRef]
  9. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
    [CrossRef]
  10. Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett.29(18), 2172–2174 (2004).
    [CrossRef] [PubMed]
  11. Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett.29(11), 1251–1253 (2004).
    [CrossRef] [PubMed]
  12. Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004).
    [CrossRef]
  13. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
    [CrossRef]
  14. J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
    [CrossRef]
  15. T. T. Basiev, M. E. Doroshenko, L. I. Ivleva, I. S. Voronina, V. A. Konjushkin, V. V. Osiko, and S. V. Vasilyev, “Demonstration of high self-Raman laser performance of a diode-pumped SrMoO4:Nd3+ crystal,” Opt. Lett.34(7), 1102–1104 (2009).
    [CrossRef] [PubMed]
  16. T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009).
    [CrossRef]
  17. Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
    [CrossRef]
  18. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p.1024.
  19. G. H. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron.33(1), 41–44 (1997).
    [CrossRef]
  20. S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
    [CrossRef]
  21. M. A. Jaspan, D. Welford, and J. A. Russell, “Passively Q-Switched Microlaser Performance in the Presence of Pump-Induced Bleaching of the Saturable Absorber,” Appl. Opt.43(12), 2555–2560 (2004).
    [CrossRef] [PubMed]
  22. S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
    [CrossRef]
  23. Z. Li, X. Huai, Y. Tao, and Z. Guo, “Analysis of thermal effects in an orthotropic laser medium,” Appl. Opt.48(3), 598–608 (2009).
    [CrossRef] [PubMed]

2012

Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
[CrossRef]

2010

2009

2008

2007

S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, and J. Y. Wang, “Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm,” Opt. Lett.32(20), 2951–2953 (2007).
[CrossRef] [PubMed]

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

2006

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
[CrossRef]

2005

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

2004

2001

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

1997

G. H. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron.33(1), 41–44 (1997).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Barnes, J. C.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Basiev, T. T.

Bass, M.

G. H. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron.33(1), 41–44 (1997).
[CrossRef]

Chang, J.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Chen, W.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Chen, X. H.

Chen, Y. F.

Chyba, T. H.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Cong, Z. H.

Dekker, P.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
[CrossRef]

Ding, S.

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Doroshenko, M. E.

Du, C. L.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Fan, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Fan, S. Z.

Gad, G. M. A.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Ge, W. W.

J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
[CrossRef]

Guo, Y. Y.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Guo, Z.

Huai, X.

Inagawa, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Ivleva, L. I.

Jaspan, M. A.

Jia, G. H.

Jia, P.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Jiang, M. H.

J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Kisel, V. E.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Konjushkin, V. A.

Kouta, H.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Kuleshov, N. V.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Kupchenko, M. I.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Lee, A.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009).
[CrossRef]

Li, P.

Li, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Li, S. T.

Li, Z.

Liu, Y.

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

Liu, Z.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Liu, Z. J.

Lu, J.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Lu, T. L.

Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
[CrossRef]

Matrosov, V. N.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Matrosova, T. A.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Murai, T.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Ojima, Y.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
[CrossRef]

Omatsu, T.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
[CrossRef]

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Osiko, V. V.

Pask, H. M.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
[CrossRef]

Peng, J. Y.

Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
[CrossRef]

Piper, J.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009).
[CrossRef]

Piper, J. A.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
[CrossRef]

Ruan, S. C.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Russell, J. A.

Shcherbitsky, V. G.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Shi, Y. X.

Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
[CrossRef]

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Takeuchi, N.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Tao, X. T.

Tao, Y.

Tateda, M.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Tolstik, N. A.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Troshin, A. E.

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

Tu, C. Y.

Ueda, K. I.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Usuki, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Vasilyev, S. V.

Voronina, I. S.

Wang, J. Y.

Wang, Q.

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Wang, Q. P.

Wang, S.

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

Wang, Z. P.

J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
[CrossRef]

Welford, D.

Xiao, G. H.

G. H. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron.33(1), 41–44 (1997).
[CrossRef]

Yu, Y. Q.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Zhang, H. J.

Zhang, J.

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

Zhang, J. X.

J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
[CrossRef]

Zhang, L.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Zhang, X.

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

Zhang, X. L.

Zhang, X. Y.

Zheng, Y.

Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Y. F. Chen, “Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser,” Appl. Phys. B78(6), 685–687 (2004).
[CrossRef]

V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B80(4-5), 471–473 (2005).
[CrossRef]

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B97(4), 799–804 (2009).
[CrossRef]

IEEE J. Quantum Electron.

G. H. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron.33(1), 41–44 (1997).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron.42(9), 927–933 (2006).
[CrossRef]

J. Cryst. Growth

J. Y. Wang, H. J. Zhang, Z. P. Wang, W. W. Ge, J. X. Zhang, and M. H. Jiang, “Growth, properties and Raman shift laser in tungstate crystals,” J. Cryst. Growth292(2), 377–380 (2006).
[CrossRef]

J. Phys. D Appl. Phys.

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D Appl. Phys.40(9), 2736–2747 (2007).
[CrossRef]

Laser Phys.

Y. X. Shi, Y. Zheng, J. Y. Peng, and T. L. Lu, “Passively Q Switched a-cut Nd:YVO4 Self-Raman Laser,” Laser Phys.22(5), 904–906 (2012).
[CrossRef]

Opt. Commun.

A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)–materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun.232(1-6), 327–331 (2004).
[CrossRef]

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. Ding, X. Zhang, Q. Wang, J. Zhang, and S. Wang, “Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method,” Phys. Rev. A76(5), 053830 (2007).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p.1024.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup of the diode-pumped passively Q-switched c-cut Nd:YVO4 /Cr4+:YAG self-Raman laser

Fig. 2
Fig. 2

Average output power (a) and pulse energy (b) at 1178nm with respect to the incident pump power for Cr4+:YAG of initial transmission 89% and 86%, and M2 of RS = 80% and 90%, respectively

Fig. 3
Fig. 3

Pulse repetition frequency (a) and pulse width (b) at 1178nm with respect to the incident pump power for Cr4+:YAG of T0 = 89% and 86%, and M2 of RS = 80% and 90%, respectively

Fig. 4
Fig. 4

Profiles of first Stokes pulse in (a), the train of first Stokes in (b) generated under the pump power of 5.0W for T0 = 89% and RS = 90%; unexpected reduction of first Stokes pulse duration generated under the pump power of 7.3W for T0 = 86% and RS = 80% in (c).

Fig. 5
Fig. 5

Temporal profiles of first Stokes pulses generated with the pump power of 5W for T0 = 89% and RS = 90% in (a); T0 = 89% and RS = 80% in (b); T0 = 86% and RS = 90% in (c); T0 = 86% and RS = 80% in (d).

Fig. 6
Fig. 6

Water cooled copper blocks including Nd:YVO4 crystal and indium foil

Fig. 7
Fig. 7

Pulse trains of 1066nm output of passively Q-switched laser in (a); pulse trains at 1178nm of passively Q-switched self-Raman laser, horizontally polarized pulse train in (b) and vertically polarized one in (c).

Fig. 8
Fig. 8

(a) Spectrum of passively Q-switched c-cut Nd:YVO4/Cr4+:YAG self-Raman laser output under the pump power of 4.3W for T0 = 89% and RS = 90%, (b) the spectrum of fundamental laser corresponding to (a)

Fig. 9
Fig. 9

Spatial profile of fundamental laser in (a) of passively Q-switched c-cut Nd:YVO4/Cr4+:YAG laser under the pump power of 4.8W for T0 = 89% and output coupling rate of R = 90%@1066nm, spatial profile of first Stokes laser in (b) of passively Q-switched c-cut Nd:YVO4/Cr4+:YAG self-Raman laser output under the pump power of 6.2W for T0 = 89% and RS = 90%.

Tables (2)

Tables Icon

Table 1 The normalized parameters for passively Q-switched c-cut Nd:YVO4/Cr4+:YAG self-Raman lasers

Tables Icon

Table 2 Polarized average output powers at 1066nm of passively Q-switched c-cut Nd:YVO4/Cr4+:YAG laser

Metrics