Abstract

Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micro-mirror device controlled by a field programmable gate array. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett.28(2), 88–89 (1976).
    [CrossRef]
  2. A. Gover, C. P. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am.66(4), 306–311 (1976).
    [CrossRef]
  3. G. J. Dunning and R. C. Lind, “Demonstration of image transmission through fibers by optical phase conjugation,” Opt. Lett.7(11), 558–560 (1982).
    [CrossRef] [PubMed]
  4. A. A. Friesem, U. Levy, and Y. Silberberg, “Parallel transmission of images through single optical fibers,” Proc. IEEE71(2), 208–221 (1983).
    [CrossRef]
  5. R. D. Leonardo, S. Bianchi, and R. D. Leonardo, “Hologram transmission through multi-mode optical fibers,” Opt. Express19, 247–254 (2010).
  6. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012).
    [CrossRef] [PubMed]
  7. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express4(2), 260–270 (2013).
    [CrossRef] [PubMed]
  8. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012).
    [CrossRef] [PubMed]
  9. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
    [CrossRef] [PubMed]
  10. R. N. Mahalati, R. Y. Gu, and J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express21(2), 1656–1668 (2013).
    [CrossRef] [PubMed]
  11. I. Freund, “Looking through walls and around corners,” Physica A168(1), 49–65 (1990).
    [CrossRef]
  12. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
    [CrossRef]
  14. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
    [CrossRef] [PubMed]
  15. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011).
    [CrossRef] [PubMed]
  16. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  17. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010).
    [CrossRef] [PubMed]
  18. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
    [CrossRef] [PubMed]
  19. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
    [CrossRef]
  20. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  21. W. H. Lee, “Computer-Generated Holograms: Techniques and Applications,” in Prog. Optics XVI, E. Wolf, E. Wolf, ed., North-Holl (1978).
  22. J. H. Schreiber and H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 547–666.
  23. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012).
    [CrossRef] [PubMed]
  24. D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed, phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media,” Proc. SPIE8617, 86170I, 86170I-6 (2013).
    [CrossRef]
  25. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
    [CrossRef] [PubMed]
  26. F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media.,” Opt. Lett.36(11), 2053–2055 (2011).
    [CrossRef] [PubMed]

2013

2012

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express20(10), 10583–10590 (2012).
[CrossRef] [PubMed]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012).
[CrossRef] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

2011

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011).
[CrossRef] [PubMed]

F. Kong, R. H. Silverman, L. Liu, P. V. Chitnis, K. K. Lee, and Y. C. Chen, “Photoacoustic-guided convergence of light through optically diffusive media.,” Opt. Lett.36(11), 2053–2055 (2011).
[CrossRef] [PubMed]

2010

2008

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

2007

1990

I. Freund, “Looking through walls and around corners,” Physica A168(1), 49–65 (1990).
[CrossRef]

1983

A. A. Friesem, U. Levy, and Y. Silberberg, “Parallel transmission of images through single optical fibers,” Proc. IEEE71(2), 208–221 (1983).
[CrossRef]

1982

1976

A. Gover, C. P. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am.66(4), 306–311 (1976).
[CrossRef]

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett.28(2), 88–89 (1976).
[CrossRef]

Bianchi, S.

Bifano, T.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Caravaca-Aguirre, A. M.

D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed, phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media,” Proc. SPIE8617, 86170I, 86170I-6 (2013).
[CrossRef]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Chen, Y. C.

Chitnis, P. V.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Cižmár, T.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012).
[CrossRef] [PubMed]

Conkey, D. B.

D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed, phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media,” Proc. SPIE8617, 86170I, 86170I-6 (2013).
[CrossRef]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

Cui, M.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Dholakia, K.

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012).
[CrossRef] [PubMed]

Dunning, G. J.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Farahi, S.

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A168(1), 49–65 (1990).
[CrossRef]

Friesem, A. A.

A. A. Friesem, U. Levy, and Y. Silberberg, “Parallel transmission of images through single optical fibers,” Proc. IEEE71(2), 208–221 (1983).
[CrossRef]

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Gover, A.

Gu, R. Y.

Hoffman, S.

Kahn, J. M.

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Kong, F.

Lee, C. P.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Lee, K. K.

Leonardo, R. D.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Levy, U.

A. A. Friesem, U. Levy, and Y. Silberberg, “Parallel transmission of images through single optical fibers,” Proc. IEEE71(2), 208–221 (1983).
[CrossRef]

Lind, R. C.

Liu, L.

Lu, Y.

Mahalati, R. N.

Moore, J.

Moser, C.

Mosk, A. P.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Niv, E.

D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed, phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media,” Proc. SPIE8617, 86170I, 86170I-6 (2013).
[CrossRef]

Papadopoulos, I. N.

Paxman, R.

Piestun, R.

D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed, phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media,” Proc. SPIE8617, 86170I, 86170I-6 (2013).
[CrossRef]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Psaltis, D.

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

A. A. Friesem, U. Levy, and Y. Silberberg, “Parallel transmission of images through single optical fibers,” Proc. IEEE71(2), 208–221 (1983).
[CrossRef]

Silverman, R. H.

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Stockbridge, C.

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Toussaint, K.

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Yang, C.

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett.28(2), 88–89 (1976).
[CrossRef]

A. Gover, C. P. Lee, and A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am.66(4), 306–311 (1976).
[CrossRef]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett.28(2), 88–89 (1976).
[CrossRef]

Biomed. Opt. Express

J. Opt. Soc. Am.

Nat Commun

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat Commun3, 1027 (2012).
[CrossRef] [PubMed]

Nat. Photonics

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011).
[CrossRef]

Opt. Commun.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett.109(20), 203901 (2012).
[CrossRef] [PubMed]

Physica A

I. Freund, “Looking through walls and around corners,” Physica A168(1), 49–65 (1990).
[CrossRef]

Proc. IEEE

A. A. Friesem, U. Levy, and Y. Silberberg, “Parallel transmission of images through single optical fibers,” Proc. IEEE71(2), 208–221 (1983).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Proc. SPIE

D. B. Conkey, A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-speed, phase-control of wavefronts with binary amplitude DMD for light control through dynamic turbid media,” Proc. SPIE8617, 86170I, 86170I-6 (2013).
[CrossRef]

Other

W. H. Lee, “Computer-Generated Holograms: Techniques and Applications,” in Prog. Optics XVI, E. Wolf, E. Wolf, ed., North-Holl (1978).

J. H. Schreiber and H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed., 3rd ed. (Wiley, 2007), pp. 547–666.

Supplementary Material (3)

» Media 1: MOV (2596 KB)     
» Media 2: MOV (2107 KB)     
» Media 3: MOV (1590 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the experimental setup. A 532 nm laser beam is encoded with a binary amplitude Lee-hologram displayed on the DMD. The iris placed between lenses f1 and f2 lets through the −1 diffraction order, which carries the encoded information; and is imaged in the back aperture of the objective. The phase mask is focused into the fiber and the output of the fiber is imaged by the f3 lens onto a pinhole in front of a photodetector, whose signal is feed back into the FPGA controller. A CMOS camera images the output plane for monitoring but is not part of the focusing system. The inset shows how we characterize the bending angle. TS: translation stage; BS: Beam splitter; PD: Photodetector; C: CMOS Camera; P: Polarizer; f1, f2, f3: lenses

Fig. 2
Fig. 2

Block diagram of hardware implementation. Light propagates through the optical system and comes out of the MMF reaching the photodetector. The signal is digitalized and sent to the DLP4100 kit. The FPGA runs the algorithm with the measured data.

Fig. 3
Fig. 3

Demonstration of bending resilient focusing: (a) Experimental measurement of the focus degradation as a function of bending angle without active wavefront control. (b) Cross-section of the output intensity of the fiber without running the adaptive wavefront correction, and (c) with adaptive wavefront correction. The focus spot enhancement is shown at the bottom of each cross-section. Scale bar indicates 8μm.

Fig. 4
Fig. 4

Enhancement of the focus as a function of time for different average decorrelation times as determined by the speed of bending of the fiber: (a) 150 ms (Media 1), (b) 80 ms (Media 2), (c) 50 ms (Media 3). The red lines delimit the period during which the fiber is being bent. The angle of bending is shown in green. v: velocity of the stage, a: initial acceleration of the stage. Tc: Average decorrelation time of the settings.

Metrics