Abstract

We propose a scheme for obtaining an electromagnetically induced grating in an asymmetric semiconductor quantum well (QW) structure via Fano interference. In our structure, owing to Fano interference, the diffraction intensity of the grating, especially the first-order diffraction, can be significantly enhanced. The diffraction efficiency of the grating can be controlled efficiently by tuning the control field intensity, the interaction length, the coupling strength of tunneling, etc. This investigation may be used to develop novel photonic devices in semiconductor QW systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998).
    [CrossRef]
  2. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).
    [CrossRef]
  3. J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999).
    [CrossRef]
  4. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).
    [CrossRef]
  5. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).
    [CrossRef] [PubMed]
  6. A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt.52, 2365–2371 (2005).
    [CrossRef]
  7. P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001).
    [CrossRef]
  8. L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010).
    [CrossRef]
  9. J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
    [CrossRef]
  10. B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B39, 1145 (2006).
    [CrossRef]
  11. Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010).
    [CrossRef]
  12. L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett.35, 977–979 (2010).
    [CrossRef] [PubMed]
  13. S. A. de Carvalho and L. E. E. de Araujo, “Electromagnetically-induced phase grating: A coupled-wave theory analysis,” Opt. Express19, 1936–1944 (2011).
    [CrossRef] [PubMed]
  14. L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011).
    [CrossRef]
  15. N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
    [CrossRef]
  16. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
    [CrossRef]
  17. B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012).
    [CrossRef]
  18. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a λ system,” Phys. Rev. A57, 4014–4018 (1998).
    [CrossRef]
  19. J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a λ system with spontaneously generated coherence,” Phys. Rev. A65, 063807 (2002).
    [CrossRef]
  20. W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002).
    [CrossRef]
  21. Y. Niu and S. Gong, “Enhancing kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A73, 053811 (2006).
    [CrossRef]
  22. Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express20, 1219–1229 (2012).
    [CrossRef] [PubMed]
  23. H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun.131, 333–338 (1996).
    [CrossRef]
  24. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
    [CrossRef]
  25. X. M. Su and J. Y. Gao, “Optical switching based on transparency in a semiconductor double-quantum well,” Phys. Lett. A264, 346–349 (2000).
    [CrossRef]
  26. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
    [CrossRef] [PubMed]
  27. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
    [CrossRef]
  28. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B75, 155329 (2007).
    [CrossRef]
  29. Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
    [CrossRef]
  30. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
    [CrossRef]
  31. J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
    [CrossRef] [PubMed]
  32. A. Imamoḡlu and R. J. Ram, “Semiconductor lasers without population inversion,” Opt. Lett.19, 1744–1746 (1994).
    [CrossRef]
  33. D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, 9034–9037 (1986).
    [CrossRef]
  34. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
    [CrossRef] [PubMed]
  35. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
    [CrossRef]
  36. N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
    [CrossRef]
  37. W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
    [CrossRef]
  38. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
    [CrossRef]

2012 (4)

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012).
[CrossRef]

Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express20, 1219–1229 (2012).
[CrossRef] [PubMed]

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
[CrossRef]

2011 (4)

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

S. A. de Carvalho and L. E. E. de Araujo, “Electromagnetically-induced phase grating: A coupled-wave theory analysis,” Opt. Express19, 1936–1944 (2011).
[CrossRef] [PubMed]

L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011).
[CrossRef]

2010 (4)

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010).
[CrossRef]

L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett.35, 977–979 (2010).
[CrossRef] [PubMed]

L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010).
[CrossRef]

J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
[CrossRef]

2008 (1)

N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
[CrossRef]

2007 (2)

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B75, 155329 (2007).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
[CrossRef] [PubMed]

2006 (4)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Y. Niu and S. Gong, “Enhancing kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A73, 053811 (2006).
[CrossRef]

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B39, 1145 (2006).
[CrossRef]

2005 (3)

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).
[CrossRef] [PubMed]

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt.52, 2365–2371 (2005).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

2002 (3)

J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a λ system with spontaneously generated coherence,” Phys. Rev. A65, 063807 (2002).
[CrossRef]

W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002).
[CrossRef]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).
[CrossRef]

2001 (1)

P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001).
[CrossRef]

2000 (1)

X. M. Su and J. Y. Gao, “Optical switching based on transparency in a semiconductor double-quantum well,” Phys. Lett. A264, 346–349 (2000).
[CrossRef]

1999 (2)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).
[CrossRef]

J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999).
[CrossRef]

1998 (2)

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998).
[CrossRef]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a λ system,” Phys. Rev. A57, 4014–4018 (1998).
[CrossRef]

1997 (2)

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

1996 (2)

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun.131, 333–338 (1996).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
[CrossRef] [PubMed]

1994 (1)

1986 (1)

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, 9034–9037 (1986).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Agarwal, G. S.

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a λ system,” Phys. Rev. A57, 4014–4018 (1998).
[CrossRef]

Ahn, D.

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, 9034–9037 (1986).
[CrossRef]

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

Ba, N.

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

Brown, A. W.

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).
[CrossRef] [PubMed]

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt.52, 2365–2371 (2005).
[CrossRef]

Cai, X.

B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012).
[CrossRef]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
[CrossRef] [PubMed]

Cardoso, G.

J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999).
[CrossRef]

Cardoso, G. C.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).
[CrossRef]

Chu, S.-N. G.

Chuang, S. L.

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, 9034–9037 (1986).
[CrossRef]

Cui, N.

N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
[CrossRef]

de Araujo, L. E. E.

de Carvalho, S. A.

Du, S. W.

J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
[CrossRef]

Duan, W. H.

L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011).
[CrossRef]

L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010).
[CrossRef]

Dutta, B. K.

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B39, 1145 (2006).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Gao, J. Y.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a λ system with spontaneously generated coherence,” Phys. Rev. A65, 063807 (2002).
[CrossRef]

W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002).
[CrossRef]

P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001).
[CrossRef]

X. M. Su and J. Y. Gao, “Optical switching based on transparency in a semiconductor double-quantum well,” Phys. Lett. A264, 346–349 (2000).
[CrossRef]

Gong, S.

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Y. Niu and S. Gong, “Enhancing kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A73, 053811 (2006).
[CrossRef]

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
[CrossRef]

Imamog¯lu, A.

Imamoglu, A.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun.131, 333–338 (1996).
[CrossRef]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).
[CrossRef]

Jiang, L.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

Jiang, Y.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

Jin, S.

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Jin, Y. J.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
[CrossRef]

Kim, K.

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010).
[CrossRef]

Kou, J.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

La Rocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

Lezama, A.

J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999).
[CrossRef]

Li, J. H.

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B75, 155329 (2007).
[CrossRef]

Li, R.

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Li, X. M.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
[CrossRef]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998).
[CrossRef]

Lin, H.

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998).
[CrossRef]

Liu, X. J.

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

Mahapatra, P. K.

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B39, 1145 (2006).
[CrossRef]

Menon, S.

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a λ system,” Phys. Rev. A57, 4014–4018 (1998).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).
[CrossRef]

Niu, Y.

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Y. Niu and S. Gong, “Enhancing kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A73, 053811 (2006).
[CrossRef]

Peng, Y.

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

Pfeiffer, L. N.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
[CrossRef] [PubMed]

Qi, Y.

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

Ram, R. J.

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
[CrossRef]

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun.131, 333–338 (1996).
[CrossRef]

Shin, S. G.

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010).
[CrossRef]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

Sirtori, C.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
[CrossRef] [PubMed]

Su, X. M.

P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001).
[CrossRef]

X. M. Su and J. Y. Gao, “Optical switching based on transparency in a semiconductor double-quantum well,” Phys. Lett. A264, 346–349 (2000).
[CrossRef]

Sun, H.

N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
[CrossRef]

H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett.32, 2475–2477 (2007).
[CrossRef] [PubMed]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Tabosa, J.

J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999).
[CrossRef]

Tabosa, J. W. R.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).
[CrossRef]

Wan, R. G.

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

Wang, J.

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

Wang, T.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
[CrossRef]

Wen, J. M.

J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
[CrossRef]

West, K. W.

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

J. Faist, C. Sirtori, F. Capasso, S.-N. G. Chu, L. N. Pfeiffer, and K. W. West, “Tunable fano interference in intersubband absorption,” Opt. Lett.21, 985–987 (1996).
[CrossRef] [PubMed]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a λ system with spontaneously generated coherence,” Phys. Rev. A65, 063807 (2002).
[CrossRef]

W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002).
[CrossRef]

Wu, X. Y.

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

Xiao, M.

J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
[CrossRef]

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt.52, 2365–2371 (2005).
[CrossRef]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett.30, 699–701 (2005).
[CrossRef] [PubMed]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998).
[CrossRef]

Xiao, Z. H.

B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012).
[CrossRef]

Z. H. Xiao, L. Zheng, and H. Lin, “Photoinduced diffraction grating in hybrid artificial molecule,” Opt. Express20, 1219–1229 (2012).
[CrossRef] [PubMed]

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010).
[CrossRef]

Xie, B.

B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012).
[CrossRef]

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

Xu, W. H.

W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002).
[CrossRef]

Xu, Z.

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

Yan, W.

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
[CrossRef]

Yao, H.

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

Yelin, S. F.

L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011).
[CrossRef]

L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010).
[CrossRef]

Zhai, P. W.

P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001).
[CrossRef]

Zhai, Y. H.

J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
[CrossRef]

Zhang, S. Q.

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

Zhao, L.

L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011).
[CrossRef]

L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010).
[CrossRef]

Zheng, L.

Appl. Phys. B (1)

W. Yan, T. Wang, X. M. Li, and Y. J. Jin, “Electromagnetically induced transparency and theoretical slow light in semiconductor multiple quantum wells,” Appl. Phys. B108, 515–519 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70, 3455–3457 (1997).
[CrossRef]

J. Mod. Opt. (1)

A. W. Brown and M. Xiao, “Frequency detuning and power dependence of reflection from an electromagnetically induced absorption grating,” J. Mod. Opt.52, 2365–2371 (2005).
[CrossRef]

J. Phys. B (2)

B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B39, 1145 (2006).
[CrossRef]

Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B43, 161004 (2010).
[CrossRef]

Nature (1)

J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature390, 589–591 (1997).
[CrossRef]

Opt. Commun. (4)

H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun.131, 333–338 (1996).
[CrossRef]

N. Ba, X. Y. Wu, X. J. Liu, S. Q. Zhang, and J. Wang, “Electromagnetically induced grating in an atomic system with a static magnetic field,” Opt. Commun.285, 3792–3797 (2012).
[CrossRef]

B. Xie, X. Cai, and Z. H. Xiao, “Electromagnetically induced phase grating controlled by spontaneous emission,” Opt. Commun.285, 133–135 (2012).
[CrossRef]

J. Tabosa, A. Lezama, and G. Cardoso, “Transient bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun.165, 59–64 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Lett. A (2)

P. W. Zhai, X. M. Su, and J. Y. Gao, “Optical bistability in electromagnetically induced grating,” Phys. Lett. A289, 27–33 (2001).
[CrossRef]

X. M. Su and J. Y. Gao, “Optical switching based on transparency in a semiconductor double-quantum well,” Phys. Lett. A264, 346–349 (2000).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (13)

R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A83, 033824 (2011).
[CrossRef]

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via fano-type interference in asymmetric double quantum wells,” Phys. Rev. A73, 053818 (2006).
[CrossRef]

Y. Peng, Y. Niu, Y. Qi, H. Yao, and S. Gong, “Optical precursors with tunneling-induced transparency in asymmetric quantum wells,” Phys. Rev. A83, 013812 (2011).
[CrossRef]

L. Zhao, W. H. Duan, and S. F. Yelin, “All-optical beam control with high speed using image-induced blazed gratings in coherent media,” Phys. Rev. A82, 013809 (2010).
[CrossRef]

J. M. Wen, Y. H. Zhai, S. W. Du, and M. Xiao, “Engineering biphoton wave packets with an electromagnetically induced grating,” Phys. Rev. A82, 043814 (2010).
[CrossRef]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A65, 033803 (2002).
[CrossRef]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A57, 1338–1344 (1998).
[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A59, 4773–4776 (1999).
[CrossRef]

L. Zhao, W. H. Duan, and S. F. Yelin, “Generation of tunable-volume transmission-holographic gratings at low light levels,” Phys. Rev. A84, 033806 (2011).
[CrossRef]

S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump-probe response of a λ system,” Phys. Rev. A57, 4014–4018 (1998).
[CrossRef]

J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a λ system with spontaneously generated coherence,” Phys. Rev. A65, 063807 (2002).
[CrossRef]

W. H. Xu, J. H. Wu, and J. Y. Gao, “Effects of spontaneously generated coherence on transient process in a λ system,” Phys. Rev. A66, 063812 (2002).
[CrossRef]

Y. Niu and S. Gong, “Enhancing kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A73, 053811 (2006).
[CrossRef]

Phys. Rev. B (4)

D. Ahn and S. L. Chuang, “Exact calculations of quasibound states of an isolated quantum well with uniform electric field: Quantum-well stark resonance,” Phys. Rev. B34, 9034–9037 (1986).
[CrossRef]

N. Cui, Y. Niu, H. Sun, and S. Gong, “Self-induced transmission on intersubband resonance in multiple quantum wells,” Phys. Rev. B78, 075323 (2008).
[CrossRef]

H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing kerr nonlinearity in an asymmetric double quantum well via fano interference,” Phys. Rev. B74, 155314 (2006).
[CrossRef]

J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B75, 155329 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable fano interference,” Phys. Rev. Lett.95, 057401 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram for an asymmetric GaAs/AlxGa1−xAs quantum well. (b) Sketch of the probe and control fields propagating through the sample.

Fig. 2
Fig. 2

Intersubband absorption spectrum and dispersion spectrum with (a), (b) Ωc = 0 meV and (c), (d) Ωc = 3.0 meV. The other parameters are γ2l = 1.8 meV, γ3l = 1.6 meV, γ4l = 0.4 meV, γ2d = 0.4 meV, γ3d = 0.4 meV, γ4d = 0.1 meV, Δc = 0 meV, δ = 4.7 meV.

Fig. 3
Fig. 3

(a) The amplitude of the transmission function |T(x)| with κ ≠ 0 (solid black line) and κ = 0 (dashed red line), the phase of the transmission function Φ/π with κ ≠ 0 (dotted blue line) and κ = 0 (dash-dotted magenta line). (b) The diffraction pattern Ip(θ) as a function of sin(θ) with κ ≠ 0 (solid black line) and κ = 0 (dashed red line). The parameters are Δp = 0 meV, Ωc = 3.0 meV, L = 4.0z0, Λ/λp = 4.0, M = 5. Other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

The first-order diffraction intensity Ip(θ1) as a function of Ωc (a) and L (b), respectively. Other parameters are the same as in Fig. 3.

Fig. 5
Fig. 5

(a) The amplitude of the transmission function |T(x)|. (b) The phase of the transmission function Φ/π. (c) The diffraction intensity Ip(θ) as a function of sinθ. The parameters are Δc = −11.0 meV, Δp = −1.5 meV, Ωc = 5.0 meV, L = 10.5z0. Other parameters are the same as in Fig. 3.

Fig. 6
Fig. 6

Fraunhofer diffractions of |T(x)| (a) and exp(iΦ) (b) as functions of sinθ. The parameters are the same as in Fig. 5.

Fig. 7
Fig. 7

The first-order diffraction intensity Ip(θ1) for different energy splitting δ as a function of Ωc (a) and L (b), respectively. Other parameters are the same as in Fig. 5.

Fig. 8
Fig. 8

The first-order diffraction intensity Ip(θ1) for different interference strength η as a function of Ωc (a) and L (b), respectively. Other parameters are the same as in Fig. 5.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E p ( z , t ) = 1 2 E p e i ω p t + i k p z + c . c . ,
E c ( x , z , t ) = 1 2 E c sin ( π x / Λ ) e i ω c t + i k c z z + c . c . ,
H I = h ¯ [ Ω p | 2 1 | e i ( δ + Δ p ) t + i k p z + p Ω p | 3 1 | e i ( δ Δ p ) t + i k p z + Ω c sin ( π x / Λ ) | 4 2 | e i ( δ Δ c ) t + i k cz z + q Ω c sin ( π x / Λ ) | 4 3 | e i ( δ + Δ c ) t + i k cz z + h . c . ] ,
| ψ ( t ) = a 1 ( t ) | 1 + a 2 ( t ) | 2 + a 3 ( t ) | 3 + a 4 ( t ) | 4 ,
b 1 = a 1 , b 2 = a 2 e i ( δ + Δ p ) t i k p z , b 3 = a 3 e i ( δ Δ p ) t i k p z , b 4 = a 4 e i ( Δ p + Δ c ) t i ( k p + k c ) z ,
b ˙ 1 = i Ω p b 2 + i p Ω p b 3 , b ˙ 2 = i Ω p b 1 + [ i ( δ + Δ p ) γ 2 ] b 2 + κ b 3 + i Ω c sin ( π x / Λ ) b 4 , b ˙ 3 = i p Ω p b 1 + κ b 2 [ i ( δ Δ p ) + γ 3 ] b 3 + i q Ω c sin ( π x / Λ ) b 4 , b ˙ 4 = i Ω c sin ( π x / Λ ) b 2 + i q Ω c sin ( π x / Λ ) b 3 + [ i ( Δ p + Δ c ) γ 4 ] b 4 ,
χ p = N μ 21 2 ε 0 h ¯ χ ,
χ = 1 2 ( p 2 γ ˜ 2 + γ ˜ 3 ) γ ˜ 4 + 2 i p γ ˜ 4 κ ( p q ) 2 Ω c 2 sin 2 ( π x ) ( γ ˜ 2 γ ˜ 3 + κ 2 ) γ ˜ 4 ( q 2 γ ˜ 2 + γ ˜ 3 + 2 i q κ ) Ω c 2 sin 2 ( π x ) ,
Ω p z + i γ 2 χ Ω p ,
T ( x ) = e Im [ χ ] γ 2 L e i Φ ,
I p ( θ ) = | J P ( θ ) | 2 sin 2 ( M π Λ sin θ / λ p ) M 2 sin 2 ( π Λ sin θ / λ p ) ,
J P ( θ ) = 0 1 T ( x ) exp ( i 2 π Λ x sin θ / λ p ) d x
I p ( θ 1 ) = | J p ( θ 1 ) | 2 ,
J p ( θ 1 ) = 0 1 T ( x ) exp ( i 2 π x ) d x .

Metrics