Abstract

A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, G. Cirmi, C.-J. Lai, S. Bhardwaj, and F. Kärtner, “CEP-stable, few-cycle, kHz OPCPAs for attosecond science: Energy scaling and coherent sub-cycle pulse synthesis, in Multiphoton Processes and Attosecond Physics,” in Springer Proceedings in Physics (Springer Berlin Heidelberg, 2012), Vol. 125, pp. 33–40.
  2. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
    [CrossRef] [PubMed]
  3. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
    [CrossRef]
  4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [CrossRef]
  5. S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE Sel. Top. Quantum Electron 18(1), 296–307 (2012).
    [CrossRef]
  6. A. Harth, M. Schultze, T. Lang, T. Binhammer, S. Rausch, and U. Morgner, “Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR,” Opt. Express 20(3), 3076–3081 (2012).
    [CrossRef] [PubMed]
  7. A. L. Oien, I. T. McKinnie, P. Jain, N. A. Russell, D. M. Warrington, and L. A. W. Gloster, “Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators,” Opt. Lett. 22(12), 859–861 (1997).
    [CrossRef] [PubMed]
  8. J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express 19(18), 16797–16808 (2011).
    [CrossRef] [PubMed]
  9. G. Rustad, G. Arisholm, and Ø. Farsund, “Effect of idler absorption in pulsed optical parametric oscillators,” Opt. Express 19(3), 2815–2830 (2011).
    [CrossRef] [PubMed]
  10. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19(12), 2945–2956 (2002).
    [CrossRef]
  11. D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
    [CrossRef] [PubMed]
  12. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
    [CrossRef]
  13. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
    [CrossRef]
  14. J. J. A. Fleck and M. D. Feit, “Beam propagation in uniaxial anisotropic media,” J. Opt. Soc. Am. 73(7), 920–926 (1983).
    [CrossRef]
  15. R. Sutherland, Handbook of Nonlinear Optics, Optical Engineering (Taylor & Francis, 2003).
  16. S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, “Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification,” Opt. Lett. 37(19), 3933–3935 (2012).
    [CrossRef] [PubMed]

2012 (4)

2011 (2)

2010 (2)

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

2002 (1)

1998 (1)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

1997 (2)

1983 (1)

Arisholm, G.

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Baronio, F.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[CrossRef]

Binhammer, T.

Bromage, J.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Conforti, M.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[CrossRef]

De Angelis, C.

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[CrossRef]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Demmler, S.

Dorrer, C.

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Eikema, K. S. E.

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE Sel. Top. Quantum Electron 18(1), 296–307 (2012).
[CrossRef]

Farsund, Ø.

Feit, M. D.

Fleck, J. J. A.

Gloster, L. A. W.

Hädrich, S.

Harth, A.

Herrmann, D.

Jain, P.

Jocher, C.

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

Krausz, F.

Lang, T.

Limpert, J.

Matousek, P.

McKinnie, I. T.

Morgner, U.

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

New, G. H. C.

Oien, A. L.

Osvay, K.

Rausch, S.

Ross, I. N.

Rothhardt, J.

Russell, N. A.

Rustad, G.

Schultze, M.

Tautz, R.

Tavella, F.

Tünnermann, A.

Veisz, L.

Warrington, D. M.

Witte, S.

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE Sel. Top. Quantum Electron 18(1), 296–307 (2012).
[CrossRef]

Zuegel, J. D.

IEEE Sel. Top. Quantum Electron (1)

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE Sel. Top. Quantum Electron 18(1), 296–307 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81(5), 053841 (2010).
[CrossRef]

Rev. Sci. Instrum. (2)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69(3), 1207–1223 (1998).
[CrossRef]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[CrossRef]

Other (2)

K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, G. Cirmi, C.-J. Lai, S. Bhardwaj, and F. Kärtner, “CEP-stable, few-cycle, kHz OPCPAs for attosecond science: Energy scaling and coherent sub-cycle pulse synthesis, in Multiphoton Processes and Attosecond Physics,” in Springer Proceedings in Physics (Springer Berlin Heidelberg, 2012), Vol. 125, pp. 33–40.

R. Sutherland, Handbook of Nonlinear Optics, Optical Engineering (Taylor & Francis, 2003).

Supplementary Material (1)

» Media 1: MOV (4056 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left: (a) Simulation data from both, the ordinary field with idler and signal, and the extra-ordinary field with pump, idler-SH, and signal-SH normalized to the maximum ordinary peak intensity. Phase matching is indicated by the DFG- (black double) and collinear SH phase matching curve (green dotted). The graphic representation with respect to a propagation angle instead of a spatial frequency leads to non-rectangular boarders of the window indicated by the shaded area. Right: Normalized intensity in time and space of: (b) pump pulse together with signal-SH and idler-SH, (c) signal pulse with the power spectrum and parametric phase in the inset and (d) angularly dispersed idler pulse.

Fig. 2
Fig. 2

(a): Calculated conversion efficiency curve considering broadest phase-matching for 5 mm BBO pumped at 343 nm (blue shaded) and at 515 nm (green shaded) and the calculated parametric phase curves (solid curves) [10, 11] respectively, the measured 1.5 octave spanning output spectrum (red shaded) and the measured phase (red dotted) after compression by DCM’s spanning from 600 nm to 1000 nm, and the seed spectrum for the second stage (black dotted). (b) The simulated spectrum (black solid) and phase (black dotted) underlayed by the measured spectrum (red shaded) and phase (red dotted); the temporal pulse shape of simulation (black) and measurement (red) is in the inset.

Fig. 3
Fig. 3

(a) Simulated intensities after the second stage of the two-color OPA (normalized to the maximum ordinary peak intensity). (b) Pump pulse- with signal-SH and idler-SH. (c) signal pulse [inset: signal pulse in the tangential geometry]. (d) angular dispersive idler pulse in time and space.

Fig. 4
Fig. 4

Comparison between the two non-collinear phase-matching geometries, Poynting vector walk-off compensation (PVWC) and tangential (TPM) geometry, with different pump spot sizes (1/e2 radius) and crystal lengths. Simulated beam profiles of pump, idler, and signal pulses in time and one transversal dimension in the principle phase-matching plane of BBO. The diagrams show the simulated signal-spectra (black solid) as well as measured spectra (red shaded) and the measured parametric GD (red dotted). The simulated parametric GD (black dotted) is evaluated along the red line in the colored map on top of each example illustrating the non-collinear angle distribution of the signal spectral intensity. The evolution of each scenario in respect to the position along the crystal clarifies the interplay between all pulses and the origin of spectral and temporal changes in the seed pulse (Media 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δθ( f t , f x )=arcsin f x f t c n o/e ,
E o/e ( f t , f x ,z+dz)= E o/e ( f t , f x ,z)exp( i | k( f t , n o/e ) | 2 k x ( f x ) 2 dz ),
E o ( t,x ) z 1 κ o =i( 2 E e E o * oo-e + E e E e ee-o TypeI + E e E e * eo-e + E o E e * eo-o + E e E o eo-o Type II ) E e ( t,x ) z 1 κ e =i( E o E o oo-e + 2 E o E e * ee-o + E e E o * eo-e + E e E o eo-e + E o E o * eo-o ),

Metrics