Abstract

A fast calculation method for computer generation of spherical holograms in proposed. This method is based on wave propagation defined in spectral domain and in spherical coordinates. The spherical wave spectrum and transfer function were derived from boundary value solutions to the scalar wave equation. It is a spectral propagation formula analogous to angular spectrum formula in cartesian coordinates. A numerical method to evaluate the derived formula is suggested, which uses only N(logN)2 operations for calculations on N sampling points. Simulation results are presented to verify the correctness of the proposed method. A spherical hologram for a spherical object was generated and reconstructed successfully using the proposed method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
    [Crossref]
  2. N. M. Lawandy and R. M. Balachandran “Random laser?,” Nature 373, 204, (1995).
    [Crossref]
  3. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  4. T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10, 299–305 (1993), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-10-2-299 .
    [Crossref]
  5. Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” in Practical Holography XIX: Materials and ApplicationsTung H. Jeong and Hans I. Bjelkhagen, eds., Proc. SPIE 5742, 267–274 (2005).
  6. A. Kashiwagi and Y. Sakamoto, “A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM OSA Technical Digest (CD) (Optical Society of America, 2007), paper DWB7, http://www.opticsinfobase.org/abstract.cfm?URI=DH-2007-DWB7 .
  7. T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-19-D63 .
    [Crossref] [PubMed]
  8. Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt.Express 13, 1418–1423 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1418 .
    [Crossref] [PubMed]
  9. B. J. Jackin and T. Yatagai, “Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain,” Opt.Express 18, 25546–25555 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-25546 .
    [Crossref] [PubMed]
  10. B. J. Jackin and T. Yatagai, “360° reconstruction of a 3D object using cylindrical computer generated holography,” Appl. Opt. 50, H147–H152 (2011), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H147 .
    [Crossref] [PubMed]
  11. M. L. Tachiki, Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for spherical computer-generated holograms,” Appl. Opt. 45, 3527–3533 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-15-3527 .
    [Crossref] [PubMed]
  12. R. J. Chien and B. K. Alpert, “A fast spherical filter with uniform resolution,” J. Comput. Phys. 136, 580–584 (1997).
    [Crossref]
  13. J. R. Driscoll and D. M Healy, “Computing Fourier transfroms and convolutions on the sphere,” Adv. Appl. Math. 15, 201–250 (1994).
    [Crossref]
  14. N. N. Lebedev, Special Functions and their Applications (Prentice Hall, 1965).
  15. G. B. Arfken and H. J. Weber, Mathematical Method for Physicist (Academic Press, 2001).
  16. D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
    [Crossref]
  17. P. N. Swarztrauber, “On computing the points and weights for Gauss-Legendre quadrature,” SIAM. J. Sci. Computing 24. Issue. 3, 945–954(2002).
    [Crossref]
  18. M. Wieczorek, SHTools, http://shtools.ipgp.fr/ .
  19. Z. G. Horvath, “Beyond the beam: A history of multidimensional lasers,” Opt. Photonics News 23. No. 7/8, 36–41(2012).
    [Crossref]

2012 (1)

Z. G. Horvath, “Beyond the beam: A history of multidimensional lasers,” Opt. Photonics News 23. No. 7/8, 36–41(2012).
[Crossref]

2011 (1)

2010 (1)

B. J. Jackin and T. Yatagai, “Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain,” Opt.Express 18, 25546–25555 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-25546 .
[Crossref] [PubMed]

2008 (1)

2006 (1)

2005 (2)

Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt.Express 13, 1418–1423 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1418 .
[Crossref] [PubMed]

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” in Practical Holography XIX: Materials and ApplicationsTung H. Jeong and Hans I. Bjelkhagen, eds., Proc. SPIE 5742, 267–274 (2005).

2002 (1)

P. N. Swarztrauber, “On computing the points and weights for Gauss-Legendre quadrature,” SIAM. J. Sci. Computing 24. Issue. 3, 945–954(2002).
[Crossref]

1998 (2)

D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
[Crossref]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

1997 (1)

R. J. Chien and B. K. Alpert, “A fast spherical filter with uniform resolution,” J. Comput. Phys. 136, 580–584 (1997).
[Crossref]

1995 (1)

N. M. Lawandy and R. M. Balachandran “Random laser?,” Nature 373, 204, (1995).
[Crossref]

1994 (1)

J. R. Driscoll and D. M Healy, “Computing Fourier transfroms and convolutions on the sphere,” Adv. Appl. Math. 15, 201–250 (1994).
[Crossref]

1993 (1)

Alpert, B. K.

R. J. Chien and B. K. Alpert, “A fast spherical filter with uniform resolution,” J. Comput. Phys. 136, 580–584 (1997).
[Crossref]

Arfken, G. B.

G. B. Arfken and H. J. Weber, Mathematical Method for Physicist (Academic Press, 2001).

Balachandran, R. M.

N. M. Lawandy and R. M. Balachandran “Random laser?,” Nature 373, 204, (1995).
[Crossref]

Bianco, B.

Capasso, F.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Chien, R. J.

R. J. Chien and B. K. Alpert, “A fast spherical filter with uniform resolution,” J. Comput. Phys. 136, 580–584 (1997).
[Crossref]

Cho, A. Y.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Driscoll, J. R.

J. R. Driscoll and D. M Healy, “Computing Fourier transfroms and convolutions on the sphere,” Adv. Appl. Math. 15, 201–250 (1994).
[Crossref]

Faist, J.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Fujii, T.

Gmachl, C.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Healy, D. M

J. R. Driscoll and D. M Healy, “Computing Fourier transfroms and convolutions on the sphere,” Adv. Appl. Math. 15, 201–250 (1994).
[Crossref]

Healy, D. M.

D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
[Crossref]

Horvath, Z. G.

Z. G. Horvath, “Beyond the beam: A history of multidimensional lasers,” Opt. Photonics News 23. No. 7/8, 36–41(2012).
[Crossref]

Itoh, M.

M. L. Tachiki, Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for spherical computer-generated holograms,” Appl. Opt. 45, 3527–3533 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-15-3527 .
[Crossref] [PubMed]

Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt.Express 13, 1418–1423 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1418 .
[Crossref] [PubMed]

Jackin, B. J.

B. J. Jackin and T. Yatagai, “360° reconstruction of a 3D object using cylindrical computer generated holography,” Appl. Opt. 50, H147–H152 (2011), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H147 .
[Crossref] [PubMed]

B. J. Jackin and T. Yatagai, “Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain,” Opt.Express 18, 25546–25555 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-25546 .
[Crossref] [PubMed]

Kostelec, P. J.

D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
[Crossref]

Lawandy, N. M.

N. M. Lawandy and R. M. Balachandran “Random laser?,” Nature 373, 204, (1995).
[Crossref]

Lebedev, N. N.

N. N. Lebedev, Special Functions and their Applications (Prentice Hall, 1965).

Moore, S.

D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
[Crossref]

Narimanov, E. E.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Nockel, J. U.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Rockmore, D.

D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
[Crossref]

Sakamoto, Y.

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” in Practical Holography XIX: Materials and ApplicationsTung H. Jeong and Hans I. Bjelkhagen, eds., Proc. SPIE 5742, 267–274 (2005).

Sando, Y.

M. L. Tachiki, Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for spherical computer-generated holograms,” Appl. Opt. 45, 3527–3533 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-15-3527 .
[Crossref] [PubMed]

Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt.Express 13, 1418–1423 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1418 .
[Crossref] [PubMed]

Sivco, D. L.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Stone, A. D.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

Swarztrauber, P. N.

P. N. Swarztrauber, “On computing the points and weights for Gauss-Legendre quadrature,” SIAM. J. Sci. Computing 24. Issue. 3, 945–954(2002).
[Crossref]

Tachiki, M. L.

Tobise, M.

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” in Practical Holography XIX: Materials and ApplicationsTung H. Jeong and Hans I. Bjelkhagen, eds., Proc. SPIE 5742, 267–274 (2005).

Tommasi, T.

Weber, H. J.

G. B. Arfken and H. J. Weber, Mathematical Method for Physicist (Academic Press, 2001).

Yamaguchi, T.

Yatagai, T.

B. J. Jackin and T. Yatagai, “360° reconstruction of a 3D object using cylindrical computer generated holography,” Appl. Opt. 50, H147–H152 (2011), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-50-34-H147 .
[Crossref] [PubMed]

B. J. Jackin and T. Yatagai, “Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain,” Opt.Express 18, 25546–25555 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-25546 .
[Crossref] [PubMed]

M. L. Tachiki, Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for spherical computer-generated holograms,” Appl. Opt. 45, 3527–3533 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-15-3527 .
[Crossref] [PubMed]

Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt.Express 13, 1418–1423 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1418 .
[Crossref] [PubMed]

Yoshikawa, H.

Adv. Appl. Math. (1)

J. R. Driscoll and D. M Healy, “Computing Fourier transfroms and convolutions on the sphere,” Adv. Appl. Math. 15, 201–250 (1994).
[Crossref]

Appl. Opt. (3)

J. Comput. Phys. (1)

R. J. Chien and B. K. Alpert, “A fast spherical filter with uniform resolution,” J. Comput. Phys. 136, 580–584 (1997).
[Crossref]

J. Fourier. Anal. Appl. (1)

D. M. Healy, D. Rockmore, P. J. Kostelec, and S. Moore, “FFTs for the 2-sphere - improvements and variations,” J. Fourier. Anal. Appl. 9, No.4, 341–385(1998).
[Crossref]

J. Opt. Soc. Am. A (1)

Nature (1)

N. M. Lawandy and R. M. Balachandran “Random laser?,” Nature 373, 204, (1995).
[Crossref]

Opt. Photonics News (1)

Z. G. Horvath, “Beyond the beam: A history of multidimensional lasers,” Opt. Photonics News 23. No. 7/8, 36–41(2012).
[Crossref]

Opt.Express (2)

Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt.Express 13, 1418–1423 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-5-1418 .
[Crossref] [PubMed]

B. J. Jackin and T. Yatagai, “Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain,” Opt.Express 18, 25546–25555 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-25546 .
[Crossref] [PubMed]

Practical Holography XIX: Materials and Applications (1)

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” in Practical Holography XIX: Materials and ApplicationsTung H. Jeong and Hans I. Bjelkhagen, eds., Proc. SPIE 5742, 267–274 (2005).

Science (1)

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High power directional emission from microlasers with chaotic resonators,” Science 280, 1544–1545 (1998).
[Crossref]

SIAM. J. Sci. Computing (1)

P. N. Swarztrauber, “On computing the points and weights for Gauss-Legendre quadrature,” SIAM. J. Sci. Computing 24. Issue. 3, 945–954(2002).
[Crossref]

Other (5)

M. Wieczorek, SHTools, http://shtools.ipgp.fr/ .

N. N. Lebedev, Special Functions and their Applications (Prentice Hall, 1965).

G. B. Arfken and H. J. Weber, Mathematical Method for Physicist (Academic Press, 2001).

A. Kashiwagi and Y. Sakamoto, “A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM OSA Technical Digest (CD) (Optical Society of America, 2007), paper DWB7, http://www.opticsinfobase.org/abstract.cfm?URI=DH-2007-DWB7 .

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometry of the problem.

Fig. 2
Fig. 2

Plot of phase(in radians) of the transfer function for increasing order (n).

Fig. 3
Fig. 3

Object.

Fig. 4
Fig. 4

Computed hologram(intensity) using a)proposed method and b)direct integration.

Fig. 5
Fig. 5

Computed hologram(intensity) for wavelength a) 150μm, b) 200μm, c) 250μm, d) 300μm, e) 350μm, f) 400μm.

Fig. 6
Fig. 6

Object with point sources at a)(θ = −π/6, θ = π/6), b)(θ = −π/8, θ = −π/8), c) (θ = −π/16, θ = π/16), d) (θ = −π/32, θ = π/32) and their corresponding hologram pattern(intensity).

Fig. 7
Fig. 7

Object.

Fig. 8
Fig. 8

Hologram(intensity).

Fig. 9
Fig. 9

Reconstruction.

Tables (1)

Tables Icon

Table 1 Comparision of calculation speed

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

2 u ε μ 2 u t 2 = 0
2 = 1 r 2 r ( r 2 r ) + 1 r 2 sin θ θ ( sin θ θ ) + 1 r 2 sin 2 θ 2 ϕ 2
1 r 2 r ( r 2 u r ) + 1 r 2 sin θ θ ( sin θ u θ ) + 1 r 2 sin 2 θ 2 u ϕ 2 1 c 2 2 u t 2 = 0
u ( r , θ , ϕ , t ) = R ( r ) Θ ( θ ) Φ ( ϕ ) T ( t )
d 2 Φ d ϕ 2 + m 2 Φ = 0
1 sin θ d d θ ( sin θ d Θ d θ ) + [ n ( n + 1 ) m 2 sin 2 θ ] Θ = 0
1 r 2 d d r ( r 2 d R d r ) + k 2 R n ( n + 1 ) r 2 R = 0
1 c 2 d 2 T d t 2 + k 2 T = 0
Φ ( ϕ ) = Φ 1 e im ϕ + Φ 2 e im ϕ
Θ ( θ ) = Θ 1 P n m ( cos θ ) + Θ 2 Q n m ( cos θ )
R ( r ) = R 1 h n ( 1 ) ( k r ) + R 2 h n ( 2 ) ( k r )
T ( ω ) = T 1 e i ω t + T 2 e i ω t
Y n m ( θ , ϕ ) ( 1 ) m ( 2 n + 1 ) ( n m ) ! 4 π ( n + m ) ! P n m cos ( θ ) e im ϕ
P ¯ n m = ( 2 n + 1 ) ( n m ) ! 4 π ( n + m ) ! P n m ( cos θ )
Y n m ( θ , ϕ ) = P ¯ n m ( cos θ ) e im ϕ
u ( r , θ , ϕ , ω ) = n = 0 m = n n A m n ( ω ) h n ( k r ) Y n m ( θ , ϕ )
A m n = 1 h n ( k a ) π 2 π 2 0 2 π u ( a , θ , ϕ ) Y n m ( θ , ϕ ) * sin ( θ ) d θ d ϕ
u ( r , θ , ϕ ) = n = 0 m = n n Y n m ( θ , ϕ ) ( [ π 2 π 2 0 2 π u ( a , θ , ϕ ) Y n m ( θ , ϕ ) * d Ω ] h n ( k r ) h n ( k a ) )
u ( x , y , z ) = 1 4 π 2 e i ( k x x + k y y ) d k x d k y ( [ u ( x , y , 0 ) e i ( k x x + k y y ) d x d y ] e i k z z )
U m n ( a ) = u ( a , θ , ϕ ) Y n m ( θ , ϕ ) * d Ω
U m n ( r ) = h n ( k r ) h n ( k a ) U m n ( a )
u ( r , θ , ϕ ) = n = 0 m = n n U n m ( r ) Y n m ( θ , ϕ )
h n ( 1 ) ( x ) = ( i ) n + 1 e i x i x
u ( r , θ , ϕ ) = ISHT [ SHT ( u ( a , θ , ϕ ) ) × T F s ]
u ( x , y , z ) = IFFT [ FFT ( u ( x , y , 0 ) ) × T F c ]
U m n ( r ) = π / 2 π / 2 ( π π u ( r , θ , ϕ ) e im ϕ d ϕ ) P ¯ n m ( cos θ ) d θ
U m ( θ ) = π π u ( r , θ , ϕ ) e i m ϕ d θ
= 1 I i = 1 I u ( r , θ , ϕ i ) e im ϕ i
U n m = π / 2 π / 2 U m ( θ j ) P ¯ n m ( cos θ ) sin θ d θ
= j = | m | N U m ( θ j ) P ¯ n m ( cos θ j ) w j
u ( θ , ϕ ) = m = N N ( n = | m | N U n m P n m ( cos θ ) ) e im ϕ
U m ( θ ) = n = | m | N U n m P ¯ n m ( cos θ )
u ( θ , ϕ ) = m = N N U m ( θ ) e im ϕ
AmplitudeHologram = | ( ISHT [ SHT ( Object ) × T F ] ) + ISHT [ SHT ( Reference ) × T F ] | 2
H ( r , θ , ϕ ) = O ( θ , ϕ ) exp ( i k L ) L d x d y
L = r 2 + a 2 2 r a [ sin ( θ ) sin ( θ ) + cos ( θ ) cos ( θ ) cos ( ϕ ϕ ) ]
Hologram = | H object ( r , θ , ϕ ) + H reference ( r , θ , ϕ ) | 2
Reconstruction = | ISHT [ SHT ( Hologram × Conjugate [ Reference ] ) × T F ] | 2

Metrics