Abstract

A model of miniaturized space-modulated Fourier transform infrared spectrometer (FTIR) is given. The two step mirrors as the key components are designed and a lithography-electroplating technique used to fabricate the small step mirror is proposed. We analyze the effect of the experiment results resulted from fabricating technics on the recovery spectrum in theory, and demonstrate that the lithography-electroplating technique is an effective method to fabricate the step mirror, which make miniaturized FTIR realized. We believe that the performances of FTIR can be better realized by optimizing experimental conditions to make this fabricating method more attractive.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. D. Moeller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE1992, 130–139 (1993).
    [CrossRef]
  2. K. D. Möller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt.34(9), 1493–1501 (1995).
    [CrossRef] [PubMed]
  3. F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
    [CrossRef]
  4. A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express18(8), 8311–8331 (2010).
    [CrossRef] [PubMed]
  5. E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt A. Pure Appl. Opt.2(6), 519–528 (2000).
    [CrossRef]
  6. Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
    [CrossRef]
  7. B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).
  8. C. Feng, B. Wang, Z. Z. Liang, and J. Q. Liang, “Miniaturization of step mirrors in a static Fourier transform spectrometer theory and simulation,” J. Opt. Soc. Am. B28(1), 128–133 (2011).
    [CrossRef]
  9. C. Feng, J. Q. Liang, and Z. Z. Liang, “Spectrum constructing with nonuniform samples using least-squares approximation by cosine polynomials,” Appl. Opt.50, 6377–6383 (2011).
    [CrossRef] [PubMed]
  10. B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
    [CrossRef]

2011

2010

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express18(8), 8311–8331 (2010).
[CrossRef] [PubMed]

2009

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

2008

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

2004

B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
[CrossRef]

2000

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt A. Pure Appl. Opt.2(6), 519–528 (2000).
[CrossRef]

1995

1993

K. D. Moeller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE1992, 130–139 (1993).
[CrossRef]

Avrit, B. K.

B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
[CrossRef]

Bernard, F.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Brachet, F.

A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express18(8), 8311–8331 (2010).
[CrossRef] [PubMed]

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Bréon, F. M.

Buil, C.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Cansot, E.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Capsuto, E. S.

B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
[CrossRef]

Casteras, C.

A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express18(8), 8311–8331 (2010).
[CrossRef] [PubMed]

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Courau, E.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Etcheto, P.

Feng, C.

Fu, J. G.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Hébert, P. J.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Huynh, L. M.

B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
[CrossRef]

Ivanov, E. V.

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt A. Pure Appl. Opt.2(6), 519–528 (2000).
[CrossRef]

Jun, Z.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Kong, Y. M.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

Lacan, A.

A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express18(8), 8311–8331 (2010).
[CrossRef] [PubMed]

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Liang, J. Q.

C. Feng, J. Q. Liang, and Z. Z. Liang, “Spectrum constructing with nonuniform samples using least-squares approximation by cosine polynomials,” Appl. Opt.50, 6377–6383 (2011).
[CrossRef] [PubMed]

C. Feng, B. Wang, Z. Z. Liang, and J. Q. Liang, “Miniaturization of step mirrors in a static Fourier transform spectrometer theory and simulation,” J. Opt. Soc. Am. B28(1), 128–133 (2011).
[CrossRef]

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

Liang, Z. Z.

C. Feng, J. Q. Liang, and Z. Z. Liang, “Spectrum constructing with nonuniform samples using least-squares approximation by cosine polynomials,” Appl. Opt.50, 6377–6383 (2011).
[CrossRef] [PubMed]

C. Feng, B. Wang, Z. Z. Liang, and J. Q. Liang, “Miniaturization of step mirrors in a static Fourier transform spectrometer theory and simulation,” J. Opt. Soc. Am. B28(1), 128–133 (2011).
[CrossRef]

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

Loesel, J.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Lv, J. G.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Maxwell, E. W.

B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
[CrossRef]

Moeller, K. D.

K. D. Moeller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE1992, 130–139 (1993).
[CrossRef]

Möller, K. D.

Pierangelo, C.

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Rosak, A.

Roucayrol, L.

A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express18(8), 8311–8331 (2010).
[CrossRef] [PubMed]

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Salaün, Y.

Shu, P.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Wang, B.

C. Feng, B. Wang, Z. Z. Liang, and J. Q. Liang, “Miniaturization of step mirrors in a static Fourier transform spectrometer theory and simulation,” J. Opt. Soc. Am. B28(1), 128–133 (2011).
[CrossRef]

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

Wang, W. B.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Zhang, J.

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

Zheng, Y.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Zhu, W. B.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Acta Phys. Sin.

B. Wang, Z. Z. Liang, Y. M. Kong, J. Q. Liang, J. G. Fu, Y. Zheng, W. B. Zhu, J. G. Lv, W. B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin.59, 907–912 (2010).

Appl. Opt.

J. Opt A. Pure Appl. Opt.

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt A. Pure Appl. Opt.2(6), 519–528 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Proc. SPIE

B. K. Avrit, E. W. Maxwell, L. M. Huynh, and E. S. Capsuto, “Characterization of an Ultra-Thick Positive Photoresist for Electroplating Applications,” Proc. SPIE5376, 929–938 (2004).
[CrossRef]

Y. M. Kong, J. Q. Liang, Z. Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE7283, 728304, 728304-5 (2009).
[CrossRef]

K. D. Moeller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE1992, 130–139 (1993).
[CrossRef]

F. Brachet, P. J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE7100, 710019, 710019-11 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Simplified configuration of the micro FTIR.

Fig. 2
Fig. 2

Sketch map of step mirror.

Fig. 3
Fig. 3

The curve of spin speed vs. layer thickness.

Fig. 4
Fig. 4

The curve of prebaking time vs. temperature.

Fig. 5
Fig. 5

Surface morphology at different current density (time = 3h, 400 × .).

Fig. 6
Fig. 6

Surface morphology at different electroplating time (current density = 1.28 mA/cm2, 400 × .).

Fig. 7
Fig. 7

Small step mirror with reflect coating.

Fig. 8
Fig. 8

One step of small step mirror by AFM.

Fig. 9
Fig. 9

AFM measurement of the reflect surface in small step mirror.

Fig. 10
Fig. 10

Real spectrum with roughness 67.408 nm and 5 nm (red line) vs. ideal spectrum (blue line).

Fig. 11
Fig. 11

Steps height of small step mirror tested by KLA-Tencor P-16 + profile.

Fig. 12
Fig. 12

Ideal spectrum (α = 0) vs real spectrum (α = 0.01°).

Fig. 13
Fig. 13

SNR vs. α.

Fig. 14
Fig. 14

Difference between real step height (red solid circle) and ideal step height (blue solid circle).

Tables (2)

Tables Icon

Table 1 Parameters of Ni Electroplating

Tables Icon

Table 2 Heights detail of small step mirror

Metrics