Abstract

The Lucia laser chain is a Diode Pumped Solid State Laser system based on Yb3+ doped YAG disks used in an active mirror scheme. Front-end and amplifier stages are presented with recent energetic performances (14 J / 2 Hz) achieved with improved pumping and extraction architectures. Emphasis is given on the crucial role of ASE and thermal mitigation considerations in engineering the amplifier head.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express17(5), 3792–3801 (2009).
    [CrossRef] [PubMed]
  2. D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of Partially Pumped Active Mirrors for High Average-Power Diode-Pumped Solid-State Lasers,” Opt. Express19(9), 8413–8422 (2011).
    [CrossRef] [PubMed]
  3. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
    [CrossRef]
  4. M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
    [CrossRef]
  5. J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt.44(9), 1559–1571 (2005).
    [CrossRef] [PubMed]
  6. A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express19(13), 12766–12780 (2011).
    [CrossRef] [PubMed]
  7. P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
    [CrossRef]
  8. L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
    [CrossRef]
  9. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
    [CrossRef]
  10. J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. Mason, C. Hernandez-Gomez, J. Collier, J. Hein, M. Wolf, J. Körner, and B. Le Garrec, “Multi kJ Level Laser concepts for HiPER facility,” The Sixth International Conference on Inertial Fusion Sciences and Applications, 6–11 September 2009, San Francisco, USA. 2010 Journal of Physics: Conference Series, 244(1), 012010.
  11. B. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” The Sixth International Conference on Inertial Fusion Sciences and Applications, 6–11 September 2009, San Francisco, USA. 2010 Journal of Physics: Conference Series, 244(3), 032020.
  12. A. C. Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, R. J. Deri, A. M. Dunne, D. L. Flowers, M. A. Henesian, K. R. Manes, E. I. Moses, S. I. Rana, K. I. Schaffers, M. L. Spaeth, C. J. Stolz, and S. J. Telford, “Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited],” Opt. Mater. Express1(7), 1341–1352 (2011).
    [CrossRef]
  13. J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
    [CrossRef]
  14. J.-C. Chanteloup and D. Albach, “Current Status on High Average Power and Energy Diode Pumped Solid State Lasers [Invited],” IEEE Photon. J.3(2), 245–248 (2011).
    [CrossRef]
  15. J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 J, ns pulses, kW averaged power, based on Ytterbium Diode Pumped Solid State Laser,” Proc. SPIE 5707, Solid State Lasers XIV: Technology and Devices, 105 (May 05, 2005).
  16. A. Fülöp, G. Bourdet, J.-C. Chanteloup, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, H. Yu, and Z. Zhao, “Diode pumped, Yb:YAG, V-shape unstable supergaussian laser resonators for 10 Hz - 100 Joules class laser,” Proc SPIE 5708, Laser Resonators and Beam Control VIII (2005).
  17. E. Bartnicki and G. L. Bourdet, “Simulation and experimental results of kaleidoscope homogenizers for longitudinal diode pumping,” Appl. Opt.49(9), 1636–1642 (2010).
    [CrossRef] [PubMed]
  18. J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
    [CrossRef]
  19. J.-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo, and B. Vincent, “6.6 J / 2 Hz Yb:YAG Diode-Pumped Laser Chain Activation,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuE4.
  20. D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
    [CrossRef]
  21. M. Arzakantsyan, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Growth of large 90 mm diameter Yb:YAG single crystals with Bagdasarov method,” Opt. Mater. Express2(9), 1219–1225 (2012).
    [CrossRef]
  22. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-Efficiency 10 J Diode Pumped Cryogenic Gas Cooled Yb:YAG Multi-Slab Amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
    [CrossRef] [PubMed]
  23. http://hilase.cz/en/research-programs/research-programme-2/
  24. H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012).
    [CrossRef] [PubMed]

2012 (5)

2011 (6)

D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of Partially Pumped Active Mirrors for High Average-Power Diode-Pumped Solid-State Lasers,” Opt. Express19(9), 8413–8422 (2011).
[CrossRef] [PubMed]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express19(13), 12766–12780 (2011).
[CrossRef] [PubMed]

A. C. Erlandson, S. M. Aceves, A. J. Bayramian, A. L. Bullington, R. J. Beach, C. D. Boley, J. A. Caird, R. J. Deri, A. M. Dunne, D. L. Flowers, M. A. Henesian, K. R. Manes, E. I. Moses, S. I. Rana, K. I. Schaffers, M. L. Spaeth, C. J. Stolz, and S. J. Telford, “Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited],” Opt. Mater. Express1(7), 1341–1352 (2011).
[CrossRef]

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

J.-C. Chanteloup and D. Albach, “Current Status on High Average Power and Energy Diode Pumped Solid State Lasers [Invited],” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

2006 (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
[CrossRef]

2005 (2)

D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt.44(9), 1559–1571 (2005).
[CrossRef] [PubMed]

Aceves, S. M.

Albach, D.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

J.-C. Chanteloup and D. Albach, “Current Status on High Average Power and Energy Diode Pumped Solid State Lasers [Invited],” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express19(13), 12766–12780 (2011).
[CrossRef] [PubMed]

D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of Partially Pumped Active Mirrors for High Average-Power Diode-Pumped Solid-State Lasers,” Opt. Express19(9), 8413–8422 (2011).
[CrossRef] [PubMed]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express17(5), 3792–3801 (2009).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Ananyan, N.

Arrigoni, M.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Arzakantsyan, M.

Assémat, F.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Azrakantsyan, M.

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

Bahbah, S.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Banerjee, S.

Bartnicki, E.

Baudin, T.

P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
[CrossRef]

Bayramian, A. J.

Beach, R. J.

Berthe, L.

P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
[CrossRef]

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Biesenbach, J.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Boley, C. D.

Bourdet, G.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Bourdet, G. L.

Boustie, M.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Broussillou, C.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Brown, D. C.

D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Bullington, A. L.

Caird, J. A.

Chanteloup, J.-C.

M. Arzakantsyan, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Growth of large 90 mm diameter Yb:YAG single crystals with Bagdasarov method,” Opt. Mater. Express2(9), 1219–1225 (2012).
[CrossRef]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG crystal growth with controlled doping distribution,” Opt. Mater. Express2(1), 20–30 (2012).
[CrossRef]

J.-C. Chanteloup and D. Albach, “Current Status on High Average Power and Energy Diode Pumped Solid State Lasers [Invited],” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

D. Albach, G. LeTouzé, and J.-C. Chanteloup, “Deformation of Partially Pumped Active Mirrors for High Average-Power Diode-Pumped Solid-State Lasers,” Opt. Express19(9), 8413–8422 (2011).
[CrossRef] [PubMed]

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

A. Lucianetti, D. Albach, and J.-C. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express19(13), 12766–12780 (2011).
[CrossRef] [PubMed]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express17(5), 3792–3801 (2009).
[CrossRef] [PubMed]

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

J.-C. Chanteloup, “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt.44(9), 1559–1571 (2005).
[CrossRef] [PubMed]

Chosrowjan, H.

Collier, J. L.

Cone, R. L.

D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Cuq-Lelandais, J.-P.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Deri, R. J.

Dunne, A. M.

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
[CrossRef]

Equall, R. W.

D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Erlandson, A. C.

Ertel, K.

Fabre, G.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Flowers, D. L.

Fujimoto, Y.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Fujita, H.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Fujita, M.

Furukawa, H.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Furuse, H.

Gevorgyan, V.

Guipont, V.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Henesian, M. A.

Hernandez-Gomez, C.

Ikegawa, T.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Izawa, Y.

Jeandin, M.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Jitsuno, T.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Kanabe, T.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Kawanaka, J.

H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012).
[CrossRef] [PubMed]

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Kawashima, T.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Kubomura, H.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

LeTouzé, G.

Loeser, M.

Lucianetti, A.

Manes, K. R.

Mason, P. D.

Matsuoka, S.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Mattern, T.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Miyanaga, N.

H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express20(19), 21739–21748 (2012).
[CrossRef] [PubMed]

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Moses, E. I.

Müntz, H.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Nakano, H.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Nakatsuka, M.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Nishimae, J.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Nivard, M.

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Noeske, A.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Peyre, P.

P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
[CrossRef]

Phillips, P. J.

Piatti, P.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Pluvinage, M.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Popa, I.

P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
[CrossRef]

Rana, S. I.

Schaffers, K. I.

Siebold, M.

Spaeth, M. L.

Stolz, C. J.

Suzuki, Y.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Takeshita, K.

Telford, S. J.

Tomabechi, K.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Touzé, G.

Touzé, G. L.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Tsubakimoto, K.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Tsuchiya, N.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Ueda, K.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Venohr, R.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Vignal, V.

P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
[CrossRef]

Vincent, B.

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Yongchen Sun,

D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Yoshida, K.

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Brown, R. L. Cone, Yongchen Sun, and R. W. Equall, “Yb:YAG Absorption at Ambient and Cryogenic Temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

IEEE Photon. J. (1)

J.-C. Chanteloup and D. Albach, “Current Status on High Average Power and Energy Diode Pumped Solid State Lasers [Invited],” IEEE Photon. J.3(2), 245–248 (2011).
[CrossRef]

J. Cryst. Growth (1)

M. Azrakantsyan, D. Albach, N. Ananyan, V. Gevorgyan, and J.-C. Chanteloup, “Yb3+:YAG growth with controlled doping distribution using modified horizontal direct crystallization,” J. Cryst. Growth329(1), 39–43 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (1)

P. Peyre, L. Berthe, V. Vignal, I. Popa, and T. Baudin, “Analysis of laser shock waves and resulting surface deformations in an Al-Cu-Li aluminium alloy,” J. Phys. D Appl. Phys.45(33), 335304 (2012).
[CrossRef]

J. Phys.: Conf. Ser. (1)

J.-C. Chanteloup, D. Albach, F. Assémat, S. Bahbah, G. Bourdet, P. Piatti, M. Pluvinage, B. Vincent, G. L. Touzé, T. Mattern, J. Biesenbach, H. Müntz, A. Noeske, and R. Venohr, “Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping,” J. Phys.: Conf. Ser.112(3), 032056 (2008).
[CrossRef]

Nat. Phys. (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys.2(1), 2–5 (2006).
[CrossRef]

Nondestructive Testing and Evaluation (1)

L. Berthe, M. Arrigoni, M. Boustie, J.-P. Cuq-Lelandais, C. Broussillou, G. Fabre, M. Jeandin, V. Guipont, and M. Nivard, “State-of-the-art laser adhesion test (LASAT),” Nondestructive Testing and Evaluation26(3-4), 303–317 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (3)

The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series (1)

J. Kawanaka, N. Miyanaga, T. Kawashima, K. Tsubakimoto, Y. Fujimoto, H. Kubomura, S. Matsuoka, T. Ikegawa, Y. Suzuki, N. Tsuchiya, T. Jitsuno, H. Furukawa, T. Kanabe, H. Fujita, K. Yoshida, H. Nakano, J. Nishimae, M. Nakatsuka, K. Ueda, and K. Tomabechi, “New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic,” The fifth International Conference on Inertial Fusion Sciences and Applications, Journal of Physics: Conference Series112(3), 032058 (2008).
[CrossRef]

Other (6)

http://hilase.cz/en/research-programs/research-programme-2/

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. Mason, C. Hernandez-Gomez, J. Collier, J. Hein, M. Wolf, J. Körner, and B. Le Garrec, “Multi kJ Level Laser concepts for HiPER facility,” The Sixth International Conference on Inertial Fusion Sciences and Applications, 6–11 September 2009, San Francisco, USA. 2010 Journal of Physics: Conference Series, 244(1), 012010.

B. Le Garrec, C. Hernandez-Gomez, T. Winstone, and J. Collier, “HiPER laser architecture principles,” The Sixth International Conference on Inertial Fusion Sciences and Applications, 6–11 September 2009, San Francisco, USA. 2010 Journal of Physics: Conference Series, 244(3), 032020.

J.-C. Chanteloup, D. Albach, A. Lucianetti, T. Novo, and B. Vincent, “6.6 J / 2 Hz Yb:YAG Diode-Pumped Laser Chain Activation,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuE4.

J.-C. Chanteloup, H. Yu, G. Bourdet, C. Dambrine, S. Ferré, A. Fülöp, S. Le Moal, A. Pichot, G. Le Touzé, and Z. Zhao, “Overview of the Lucia laser program: towards 100 J, ns pulses, kW averaged power, based on Ytterbium Diode Pumped Solid State Laser,” Proc. SPIE 5707, Solid State Lasers XIV: Technology and Devices, 105 (May 05, 2005).

A. Fülöp, G. Bourdet, J.-C. Chanteloup, C. Dambrine, S. Ferré, S. Le Moal, A. Pichot, G. Le Touzé, H. Yu, and Z. Zhao, “Diode pumped, Yb:YAG, V-shape unstable supergaussian laser resonators for 10 Hz - 100 Joules class laser,” Proc SPIE 5708, Laser Resonators and Beam Control VIII (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Lucia DPSSL laser chain flow chart detailing the 4 steps amplification process to ramp up the energy from the mJ level up to 14 J.

Fig. 2
Fig. 2

Active mirror principle: Both pump and extraction beams are being coupled inside the gain medium through refraction at the AR coated top surface. Whereas almost all pump light is absorbed after reflection at the bottom HR coated surface, the incident (red) extraction beam is amplified and coupled out through a second refraction at the top surface. Such scheme is named “active mirror” to illustrate the amplification property of such mirror.

Fig. 3
Fig. 3

Scheme of the oscillator setup: Dichroic Mirror (DM), R = 600 mm spherical mirror (MC), Thin Film Polarizer (TFP), folded mirror (M1), Quarter Wave Plate (QWP), Pockel Cell (PC), 0° mirror (M2) and Yb3+:YAG crystal (GM). The pump source fiber output is imaged onto the gain medium with a pair of achromats (L1 and L2).

Fig. 4
Fig. 4

Oscillator 8.0 ns (FWHM) temporal profile (left) and 2.0 mm (FW at 1/e2) near field profile (right), recorded for 8 A pump intensity at 10 Hz. Camera pixel size is 3.75 µm and a x0.53 magnification imaging is used, leading to 7.1 µm on the right graph. For both curves, amplitude signal was normalized.

Fig. 5
Fig. 5

Oscillator spectrum centered at 1029.6 nm, 0.8 nm bandwidth spectrum (left) and output pulse energy [µJ] versus the pumping diode driving intensity [A] (right) for three different repetition rates.

Fig. 6
Fig. 6

Schematic overview of Lucia pre-amplifying stage. Double arrows symbolize the six 500 mm focal length telescope lenses. The thirteen large rectangles are mirrors whereas the two small ones are the 30 mm gain media in front of which large isosceles triangles (representing the pumping heads) are pointing. SC stands for the Static Corrector compensating accumulated astigmatism. The 2x magnification image relay telescope between both stages is not represented.

Fig. 7
Fig. 7

PAS1 extraction scheme is achieved through a 4 passes multiplexing architecture. The oscillator incoming beam is first imaged on the crystal (top left) for a 1st pass. After being sent back with a 2° horizontal multiplexing angle through a 1st telescope T1, the beam is imaged on the crystal for a 2nd pass (top right). Then, it travels back and forth through the 2nd arm of this Z-shaped layout (T2 and mirrors M2 and M3, bottom left), being this time angularly redirected in the vertical plane (see beam footprints on telescope lenses on inserts) to encounter the crystal a 3rd time. After a final travel through T1 and the crystal, the amplified beam is extracted above mirror M2 to be sent towards PAS2.

Fig. 8
Fig. 8

The static deformable mirror for astigmatism correction is pictured at the bottom where the mechanical assembly is shown on the left and a mirror used for testing with the four micrometer screws footprints appears on the right. The top right sketch illustrates the respective position of these screws. A typical example Zernike polynomials decomposition of the wave front deformation introduced by the bent mirror shows a strong astigmatism (top left) of a 20mm diameter pupil 1064 nm beam.

Fig. 9
Fig. 9

Pump light distribution lineouts with Lumiducs and kaleidoscope on Lucia PAS1 (left). Vertical scale gives the pump peak brightness in kW/cm2. Exit output of the 200 mm long silica duct (kaleidoscope) used to homogenized the pump light is pictured at right.

Fig. 10
Fig. 10

First Pre Amplifier Stage (PAS) output energy (mJ) vs. stack driving current. The maximum 126 mJ was obtained with 2 J pump energy at the crystal level. Output beam profile at maximum energy level is displayed on right together with a horizontal lineout leading to 2.1 mm FW at 1/e2 (vertical scale is related to pixel counts).

Fig. 11
Fig. 11

PAS2 output energy (mJ) vs. stacks driving current for 3 different PAS1 stack driving current (120, 140 and 150 Amperes). The maximum 586 mJ were obtained with 150 A applied on all 1 + 4 stacks of both PAS. This corresponds to about 11 Joules of pump light. Output beam profile at maximum energy level is displayed on right together with a horizontal lineout leading to 5.5 mm FW at 1/e2 (vertical scale is related to pixel counts).

Fig. 12
Fig. 12

The top picture is a side view of Lucia amplifier head with the pair of concentrating aluminum water cooled mirrors at the center. The bottom left picture shows the partially filled diode array where 41 individual stacks can be observed in pinkish color. The last picture shows gain medium fluorescence. A careful look reveals the darker tiny holes of the jet plate located behind the Yb3+:YAG disk. The right sketches illustrate how the 940 nm light emitted by the individual stacks is concentrated onto the gain medium.

Fig. 13
Fig. 13

The left picture was recorded near the main amplifier gain medium plane when 41 stacks were activated. The vertical distance between the two aluminum mirrors was 26 mm as can be seen on the right lineout (red): 11kW/cm2 intensity is achieved over a 26x30 mm2 plateau.

Fig. 14
Fig. 14

The left graph compares the thermally induced thermal lens recorded on the Lucia main amplifier head after a single pass (diamonds) with a model (pink line). On the right, an open view of the laser head is displayed as well as a picture of the water jet plate used for homogeneous cooling of the gain medium (solid pink area).

Fig. 15
Fig. 15

The left graph displays the small signal gain recorded for a 1 ms single pump shot at 16 kW/cm2 during 2 ms. The gain build up can be observed without any saturation until an exponential decay starts when pumping stops. Orange curve was obtained with the cosintered ceramics (right picture) whereas the red curve results from measurements perform with the crystal (central picture). The solid curves are simulations with (blue) and without (black) ASE [1].

Fig. 16
Fig. 16

The background of both bottom pictures is the pump light distribution exiting the PLDOS (about 26x50 mm2). The amount of light reaching the 60 mm gain medium limited by the 30 mm circular aperture crystal mount (top sketch). The 3 mm spaced 20 mm x 22 mm elliptical extraction beam footprints are also displayed on the right picture. The peripheral cavity around the YAG is designed to host an absorbing liquid if required for improved ASE management.

Fig. 17
Fig. 17

The left graph is the energy build up when the diode array driving current is increased up to 150 Amperes. Near field profile is illustrated on the central picture from which a horizontal lineout was extracted (right, units are pixel number, and 8 bits grey level).

Metrics